Zur Energiedelle von Diradikalen, IV<sup>[1]</sup>

# 2-Methylen-1,4-cyclohexadiyl<sup>☆</sup>

Wolfgang R. Roth<sup>\*</sup><sup>a</sup>, Detlef Wollweber<sup>a</sup>, Rolf Offerhaus<sup>a</sup>, Volker Rekowski<sup>a</sup>, Hans-Werner Lennartz<sup>a</sup>, Rainer Sustmann<sup>\*</sup><sup>b</sup> und Wolfgang Müller<sup>b</sup>

Fakultät für Chemie der Universität Bochum<sup>a</sup>, Postfach 102148, D-44780 Bochum

Institut für Organische Chemie der Universität-Gesamthochschule Essen<sup>b</sup>, Universitätsstraße 5-7, D-45141 Essen

Eingegangen am 7. Juni 1993

Key Words: Diradical / Oxygen trapping / Heat of formation / Energy well / ESR spectrum / Singlet-triplet splitting / Cope rearrangement, nonconcerted

The Energy-Well of Diradicals, IV<sup>[1]</sup>. - 2-Methylene-1,4-cyclohexadiyl\*

The energy surface of the title compound 2 is derived from the kinetics of its precursors 5, 6, 7, and 8, the oxygen dependance of its trapping rate, and heat of hydrogenation measurements of 5, 6, 7, and 15. These data lead to a heat of formation for the diradical 2 of 69.8 kcal/mol and an energy well of 8.2 kcal mol<sup>-1</sup>. From the Curie plot of the ESR spectrum and oxygen trapping experiments a singlet-triplet splitting of 1.4 kcal mol<sup>-1</sup> is indicated, with the triplet being the ground state.

Die Chemie der Diradikale wird im wesentlichen durch zwei Faktoren bestimmt, ihre Lebensdauer und ihre Multiplizität. Um den Einfluß der Struktur auf diese Größen kennenzulernen, haben wir die Diradikale 1–4 untersucht. Über 3 und 4 wurde bereits ausführlich berichtet<sup>[1,2]</sup>. Gegenstand der vorliegenden Arbeit ist die Thermochemie des Diradikals 2.



## 1. Substrate

Für die Generierung von 2 haben wir die Substrate 5-9 herangezogen. 5, 6 und 7 waren bekannt<sup>[3,4,5]</sup>, 7a, 8 und 9 wurden nach konventionellen Methoden auf den in Schema 1 dargestellten Wegen dargestellt.



Der für die Synthese von 8 benötigte Cyclohexadiencarbonsäureester 12<sup>[6]</sup> wurde durch Addition von Acrylester an  $\alpha$ -Pyron bei 7 kbar gewonnen. Diese Reaktionsbedingungen erlauben, die Reaktionstemperatur auf 60 °C zu senken und die Diels-Alder-Addukte 10 und 11 zu isolieren, die dann bei 150 °C zum Monocarbonsäureester 12 decarbonyliert werden können.

9 ist in der Literatur erwähnt<sup>[7]</sup>, ohne daß jedoch experimentelle oder spektroskopische Daten angegeben werden. Die Darstellung der Substanz erfolgte auf dem in Schema 1 dargestellten Weg.

Die Synthese von 7a folgte in allen Schritten der des Grundkörpers<sup>[5]</sup>. Lediglich für die katalytische Hydrierung  $13 \rightarrow 14$  wurde jetzt Deuterium verwendet.

### 2. Reaktionen

Die Thermolysen von 5, 6, 7 und 8 führen alle zum gleichen Endprodukt 3-Methylen-1,5-hexadien (15), wobei konkurrierend auch 5 und 7 gebildet werden. Diese Beobachtungen lassen sich mit der Annahme von 2-Methylen-1,4cyclohexadiyl (2) als gemeinsamem Intermediat erklären. Das gleiche Produktspektrum liefern auch die Photolysen von 8 sowie 9, womit auch hier die intermediäre Bildung des Diradikals 2 nahegelegt wird.

Eine überzeugende Stütze für die intermediäre Bildung von 2 ergibt sich durch die Thermolyse von  $7a^{[8]}$ . Neben 5 und 15 wird hier auch das *endo*-Produkt 7b gebildet, das nur über das Diradikal 2 entstanden sein kann. Wie aus der Zeitabhängigkeit der Produktverteilung (Tab. 10) abgeleitet werden kann, ist bei 81.5 °C das Verhältnis  $k_{2,5}:k_{2,7}:k_{2,15} =$ 0.03:0.57:1.00.

Wenngleich die übereinstimmende Produktpalette bei den Thermolysen bzw. Photolysen der Substrate **5–9** auch eine

B

Schema 1





gemeinsame Zwischenstufe nahelegt, ist ein eindeutiger Beweis damit noch nicht gegeben. Den haben wir durch Abfangversuche gesucht.

Wird die Thermolyse von 5 in Gegenwart von SO<sub>2</sub> (155°C, Benzol) vorgenommen, dann werden statt 15 die beiden Sulfone 16 und 17 gebildet. Wie Kontrollversuche zeigen, entstammt 16 der Reaktion des Umlagerungsproduktes 15 mit SO<sub>2</sub>, während 17 aufgrund seiner Struktur als Abfangprodukt des Diradikals 2 angesprochen werden kann. Diese Vermutung erhält eine überzeugende Stütze durch die Beobachtung, daß 17 auch das Hauptprodukt bei der Thermolyse von 7 in Gegenwart von SO<sub>2</sub> (62°C, Benzol) ist. Als Nebenprodukte werden hier außer dem von 15 sich ableitenden Sulfon 16 zwei Substanzen unbekannter Struktur gebildet ( $\Sigma$  5–7%).



Wird 8 in Gegenwart von N-Phenylmaleimid (NPM) bei -20°C bestrahlt, dann beobachtet man neben den Umlagerungsprodukten des Diradikals das von 15 sich ableitende Diels-Alder-Addukt 18. Führt man die Photolyse jedoch bei -60 °C durch, dann werden zusätzlich 19 und 20 ( $\Sigma$  ca. 5%) gebildet, wobei die Struktur von 19 durch unabhängige Synthese sichergestellt wurde. Diese Verbindungen können aufgrund ihrer Struktur als die Abfangprodukte des Diradikals 2 angesprochen werden. Die Begrenzung der Abfangreaktion auf tiefe Temperaturen dürfte Ausdruck der unterschiedlichen Aktivierungsenergien der Umlagerungs- und Abfangreaktionen des Diradikals 2 sein, wobei die Abfangreaktion als diffusionskontrollierter Prozess mit sinkender Temperatur zunehmend bedeutender werden sollte.



#### 3. Grundzustände

Für die Bestimmung der Bildungsenthalpien der Substrate bieten sich Hydrierwärme-Messungen an. Die Hydrierungen erfolgten in Isooctan an Rh/C (5, 7) bzw. Pd/C (6, 15) nach dem in Lit.<sup>[9]</sup> beschriebenen Verfahren. Die Ergebnisse der einzelnen Messungen sind in Tab. 7 und die hieraus resultierenden Bildungsenthalpien in Tab. 1 zusammengestellt.

## 4. Übergangszustände

Ausgehend von den Bildungsenthalpien der Grundzustände können die der Übergangszustände mit Hilfe kineti-

Tab. 1. Hydrier- und Bildungswärmen [kcal mol<sup>-1</sup>]

| Reaktionen                       | -ДНи     | $\Delta H_f^0$ [10] | $\Delta H_f^0$ |
|----------------------------------|----------|---------------------|----------------|
|                                  | 11       | (Produkt)           | (Edukt)        |
| $5 \rightarrow n$ -Heptan        | 98.0±0.2 | -44.85±0.22         | 53.2±0.4       |
| 6 → Methyl-<br>cyclohexan        | 92.5±0.2 | -36.98±0.25         | 55.5±0.4       |
| 7 → Methyl-<br>cyclohexan        | 89.0±0.1 | -36.98±0.25         | 52.0±0.3       |
| $15 \rightarrow 3$ -Methyl-hexan | 84.5±0.2 | -45.73±0.47         | 38.7±0.6       |

scher Messungen ermittelt werden. Bei den Reaktionen von 5 und 6 konnten wir hierbei auf Untersuchungen von Frey<sup>[3,4]</sup> zurückgreifen. Wie orientierende Messungen zeigten, ließen sich die von Frey angegebenen kinetischen Daten unter unseren Bedingungen voll reproduzieren (s. Tab. 2). Als Produkt wird bei der Thermolyse von 5 nur 15 beobachtet. Von den nach Schema 2 ebenfalls möglichen Verbindungen 6 und 7 ist der Bicyclus 7 unter den Reaktionsbedingungen nicht stabil und entzieht sich daher der direkten Beobachtung, während 6, wie Abb. 3 zeigt, energetisch nicht erreichbar ist.

Bei der Thermolyse von 6 werden nur 5 und 15 erhalten. Auch hier lagert sich das ebenfalls zu erwartende Produkt 7 unter den Thermolysebedingungen bereits schnell in das Trien 15 um. Frey<sup>[4]</sup> hatte für die Umlagerung von 6 neben zweistufigen Reaktionswegen über die intermediären Diradikale 21 oder 22 auch die Möglichkeit einer konzertierten Reaktion diskutiert, ohne jedoch eine Entscheidung treffen zu können. Aufgrund der nunmehr vorliegenden Bildungsenthalpie von 6 (s. Tab. 1) ergibt sich für den Übergangszustand TS<sub>6.5+15</sub> eine Bildungsenthalpie von 90.2 kcal  $mol^{-1}$ . Damit scheidet 21 als potentielles Intermediat aus, dessen Bildungsenthalpie mit Benson-Inkrementen oder Kraftfeld-Rechnungen zu 95.7 kcal/mol<sup>-1</sup> abgeschätzt werden kann. Für 22 ergeben diese Rechnungen einen Wert von 90.4 kcal/mol<sup>-1</sup>, der dem experimentellen Übergangszustand nahekommt. Die Situation ist damit verschieden von der des Spiropentans, bei der die Bildungsenthalpie der analogen Diradikale deutlich unter der des zu Methylencyclobutan führenden Übergangszustands liegt<sup>[11]</sup>. Die Beobachtung der beiden Reaktionsprodukte 5 und 15 legt auf der anderen Seite das Diradikal 2 als gemeinsames Intermediat nahe. Eine Stütze für diese Annahme ergibt sich aus dem Verhältnis der Umlagerungsprodukte sowie ihrer Temperatur- und Druckabhängigkeit. Wie Abb. 3 zeigt, sollte das Diradikal 2 eine Überschußenergie von ca. 20 kcal mol<sup>-1</sup> besitzen. Bei Aktivierungsenthalpien von 8.2 bzw. 10.4 kcal  $mol^{-1}$  für die Umlagerungen 2  $\rightarrow$  15 und 2  $\rightarrow$  5 (s. Tab. 2 bzw. 3) ergibt sich mit einem RRKM-Ansatz (s. exp. Teil) für 155.8 °C für das Produktverhältnis 15/5 eine Druckabhängigkeit, die dem auf t = 0 extrapolierten experimentellen Wert sehr nahekommt (s. Tab. 13). Die Temperaturabhängigkeit dieses Produktverhältnisses entspricht weiterhin

nach Korrektur um die konkurrierende sekundäre Umlagerung  $5 \rightarrow 15$  der nach Tab. 3 zu erwartenden Enthalpie-Differenz der Übergangszustände TS<sub>2,5</sub> und TS<sub>2,15</sub> von 2.2 kcal mol<sup>-1</sup>.



Die Kinetik der Umlagerung von 7 sowie 8 wurde in der Gasphase bei 100 bzw. 140 °C untersucht, wobei die Apparatur sowie die Meßtechnik gleich der in Lit.<sup>[12]</sup> waren. Die Messungen umspannten jeweils einen Temperaturbereich von 50-60°C, wobei bis zu 10 Geschwindigkeitskonstanten ermittelt wurden, die in den Tab. 8 und 14 aufgelistet sind. Die Thermolyse von 7 führt zu einem Gemisch aus 5 und 15, deren Konzentrationsverhältnis keine Abhängigkeit vom Druck und der Reaktionszeit zeigt. Bei der Thermolyse von 8 werden neben 15 auch 5 und 7 in einem (bei Drucken >100 Torr) Druck-invarianten Verhältnis gebildet, die unter den Reaktionsbedingungen teilweise zu 15 weiterreagieren. Die aus den Daten der Tabellen 8-19 abgeleiteten Aktivierungsparameter sind in Tab. 2 zusammengestellt, wobei die Fehlerangaben sich auf eine Vertrauensgrenze von 95% beziehen.

Tab. 2. Aktivierungsparameter<sup>a)</sup>

| Reaktion                  | Ea                        | log A                    | ΔH <sup>‡</sup>           | ∆s‡                                      |
|---------------------------|---------------------------|--------------------------|---------------------------|------------------------------------------|
|                           | [kcal mol <sup>-1</sup> ] | •                        | [kcal mol <sup>-1</sup> ] | [cal mol <sup>-1</sup> K <sup>-1</sup> ] |
| $7 \rightarrow 15$        | 27.51±0.15                | 12.85±0.08               | 26.77±0.15                | -2.15±0.37                               |
| $7 \rightarrow 5$         | 29.68±1.09                | 12.58±0.41               | 28.94±1.09                | -3.41±1.87                               |
| $7 \rightarrow 5+15$      | 27.63±0.24                | 12.92±0.12               | 26.89±0.24                | -1.82±0.59                               |
| $7 \rightarrow 2s$        | 27.5±0.7                  | 12.92                    | 26.7±0.7                  | -1.82                                    |
| 6→5                       | 37.06±0.80                | 13.99±0.40               | 36.19±0.80                | 2.75±1.84                                |
| 6→15                      | 35.50±0.22                | 14.19±0.11               | 34.63±0.22                | 3.63±0.50                                |
| $6 \rightarrow 5+15$      | 35.60±0.30 <sup>b)</sup>  | 14.28±0.14 <sup>b)</sup> | 34.70±0.30                | 4.1±0.64                                 |
| $8 \rightarrow 15+5+7$    | 32.65±0.18                | 14.30±0.09               | 31.85±0.18                | 4.25±0.40                                |
| $5 \rightarrow 15+2^{c)}$ | 28.45±0.26                | 9.96±0.10                | 27.52±0.26                | -15.84±0.49                              |
| $5 \rightarrow 2$         | 29.2±0.8                  | 10.07                    | 28.3±0.8                  | -15.29                                   |
| $5 \rightarrow 15$        | 26.4±0.8                  | 8.61                     | 25.5±0.8                  | -21.96                                   |
| $2 \rightarrow 15$        | 9.0±1.2                   | 14.18                    | 8.2±1.2                   | 3.50                                     |
| $2s \rightarrow 7$        | 8.3±1.5                   | 13.64                    | 7.6±1.5                   | 1.52                                     |
| $2s \rightarrow 5$        | 9.8±1.5                   | 13.45                    | 9.0±1.5                   | 0.65                                     |
| $2s \rightarrow 15$       | 8.0±1.5                   | 13.93                    | 7.3±1.5                   | 2.84                                     |
| $2s \rightarrow 2t$       | 0.0±0.2                   | 7.71                     | -                         | -                                        |
| $2t \rightarrow 2s$       | 1.4±0.2                   | 7.75                     | -                         | -                                        |

<sup>a)</sup> Fehlerangaben beziehen sich auf eine Vertrauensgrenze von 95%.  $-^{b)}$  Vgl. Lit.<sup>[3]</sup>:  $E_a = 35.7$  kcal mol<sup>-1</sup>; lg A = 14.33.  $-^{c)}$  Lit.<sup>[4]</sup>

Mit den Bildungsenthalpien der Grundzustände (Tab. 1) und den Aktivierungsparametern der Tab. 2 sind die Bildungsenthalpien von drei der vier die Hyperfläche des Diradikals 2 beschreibenden Übergangszustände gegeben (s. Abb. 3). Die Bildungsenthalpie des fehlenden Übergangszustandes  $TS_{2,15}$  kann nicht durch direkte kinetische Messungen bestimmt werden. Akzeptiert man jedoch, daß die einzelnen Substanzen entsprechend Schema 2 über das Diradikal 2 miteinander im Gleichgewicht stehen, dann sollte das Diradikal jeweils konkurrierend zu den Produkten 5, 6, 7 und 15 reagieren, und aus der Temperaturabhängigkeit der Konkurrenzkonstanten sollten unmittelbar die Enthalpiedifferenzen zwischen den jeweiligen Übergangszuständen abgeleitet werden können.

Für die Bestimmung der Temperaturabhängigkeit der Konkurrenzkonstanten steht uns mit den kinetischen Daten der Tabellen 8, 12 und 15 und den bei 0 und -70 °C durchgeführten Photolysen von 8 und 9 (Tab. 18, 19) ein Temperaturintervall von fast 200 °C zur Verfügung. In Tab. 3 sind für die Übergangszustände TS<sub>5,2</sub>, TS<sub>7,2</sub> und TS<sub>2,15</sub> die resultierenden Enthalpie-Differenzen aufgelistet, aufgrund derer sich für den Übergangszustand TS<sub>2,15</sub> eine Bildungsenthalpie von 78.0 kcal mol<sup>-1</sup> ergibt.

Tab. 3. Enthalpieunterschiede [kcal mol<sup>-1</sup>] zwischen einzelnen Übergangszuständen

| Substrat                               | 6       | 7       | 8       | <b>8</b> (hv) | 9 (hv) |
|----------------------------------------|---------|---------|---------|---------------|--------|
| TS <sub>5,2</sub> - TS <sub>2,15</sub> | 2.2±0.7 | 2.2±0.3 | 2.7±0.3 | 1.9           | 1.6    |
| TS <sub>7,2</sub> - TS <sub>2,15</sub> |         |         | 0.8±0.2 | 1.0           | 0.9    |

#### 5. Bildungsenthalpie von 2

Für die Bestimmung der Energie-Delle des Diradikals 2 haben wir seine Abfangreaktion mit Sauerstoff herangezogen. Wird die Gasphasen-Thermolyse von 5 in Gegenwart von 10-30 bar Sauerstoff durchgeführt, dann wird die Umlagerung zu 15 von der Bildung von Peroxiden begleitet, wobei die Apparatur sowie Meßtechnik gleich der in Lit.<sup>[13]</sup> war. Wie das zeitabhängige Verhältnis von Umlagerungszu Abfangprodukten zeigt, wird unter den Reaktionsbedingungen auch 15 langsam von Sauerstoff angegriffen. Eine analoge, jedoch noch deutlich langsamere Reaktion zeigt auch das Substrat 5, wie durch Vergleich der Abnahmegeschwindigkeit mit und ohne Sauerstoff deutlich wird. Die hier beobachteten Reaktionen von 5 und 15 mit Sauerstoff sind Beispiele einer allgemeinen Reaktion von Polyenen mit Sauerstoff, deren Geschwindigkeit durch die Stabilität der gebildeten Peroxy-Diradikale bestimmt wird<sup>[13]</sup>.

$$\mathbf{R} - \mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H} - \dot{\mathbf{C}}\mathbf{H} - \mathbf{C}\mathbf{H}\mathbf{R} - \mathbf{O} - \dot{\mathbf{O}}$$

Die Auswertung der Abfang-Experimente erfolgte in der Weise, daß der nach Schema 3 simulierte Reaktionsverlauf mit einer Simplex-Routine<sup>[14]</sup> an die in Tab. 16 zusammengestellten Daten angepaßt wurde, wobei im Hinblick auf die Ergebnisse bei 1,2,6,7-Octatetraen<sup>[2]</sup> auch ein Reaktionskanal für die konzentrierte Cope-Umlagerung  $5 \rightarrow 15$  berücksichtigt wurde. Für die Geschwindigkeit der Reaktion des Diradikals mit Sauerstoff wurde als stoßkontrollierte Reaktion ein Wert von  $k_s = 8.55 \cdot 10^8 \cdot \sqrt{T^{[15]}} \cdot 1 \cdot mol^{-1} \cdot s^{-1}$ und für die Summe aus  $k_{5,2} + k_{5,15}$  der von Frey<sup>[4]</sup> ermittelte Wert für  $5 \rightarrow 15$  gesetzt.

Trägt man das Verhältnis des Umlagerungsproduktes 15 zu dem vom Diradikal 2 abgeleiteten Peroxid 24 (U/A) gegen die inverse Sauerstoffkonzentration auf (s. Abb. 1), dann ergeben sich für die Peroxidkurven Achsenabschnitte. Ca. 40-50% aller Allenmoleküle entkommen auch bei unendlich hoher Sauerstoffkonzentration der Abfangreaktion, womit angezeigt wird, daß auch hier neben der zweistufigen eine konzertierte Cope-Umlagerung stattfindet. Aus der Temperaturabhängigkeit dieser Achsenabschnitte ergeben sich die in Tab. 2 aufgelisteten Aktivierungsparameter für die konzertierte Cope-Umlagerung  $5 \rightarrow 15$ .

Im Hinblick auf die Annahmen, die bei der Abschätzung von  $k_s$  gemacht wurden<sup>[15]</sup>, ist die durch Simulation ermittelte Geschwindigkeitskonstante  $k_{2,15}$  bezüglich ihres Absolutwertes mit einem größeren Unsicherheits-Intervall behaftet. Als stoßkontrollierte Reaktion ist die Temperaturabhängigkeit der Bildung von 24 jedoch durch eine Wurzel-Beziehung eindeutig gegeben, so daß die aus der Temperaturabhängigkeit der Geschwindigkeitskonstanten  $k_{2,15}$  abgeleitete Aktivierungsenergie in Tab. 2 und die hieraus abgeleitete Energiedelle des Diradikals korrekt beschrieben wird.

Schema 3



Das aus der Abfangreaktion des Diradikals 2 resultierende Peroxid 24 ist unter den Reaktionsbedingungen  $(150-200^{\circ}C)$  nicht stabil. Um Aussagen zu seiner Struktur zu erhalten, wurde die Diazaverbindung 8 bei  $-50^{\circ}C$  in Gegenwart von Sauerstoff bestrahlt. In Abwesenheit von Sauerstoff führt die Reaktion neben den Stabilisierungsprodukten des Diradikals [5, 6 (nur bei 256 nm), 7, 15] zu zwei von 15 sich ableitenden Folgeprodukten (27, 28)<sup>[16]</sup>. In Gegenwart von Sauerstoff wird neben diesen Verbindungen jetzt als Hauptprodukt das Peroxid 26 neben mehreren nicht identifizierten, sehr labilen Substanzen gebildet. Die Struktur von 26 ist durch die spektroskopischen Daten und die Produkte der katalytischen Hydrierung, *cis*- und *trans*-3-Methylcyclohexanol, gesichert. Es liegt nahe, 24 mit dem Peroxid 26 zu identifizieren.



Chem. Ber. 1993, 126, 2701-2715



Abb. 1. Sauerstoffabhängigkeit von Umlagerungs-/Abfang-Produkten (U/A) bei der Thermolyse von 5

Analoge Versuche zu den Sauerstoff-Abfangexperimenten wurden auch mit  $SO_2$  in Benzol-Lösungen vorgenommen. Auch hier ergibt sich bei 155.6°C bei der Auftragung des Verhältnisses von Abfang- zu Umlagerungsprodukten (17/ 16) gegen die inverse  $SO_2$ -Konzentration ein Achsenabschnitt (s. Abb. 2), der qualitativ mit dem in Abb. 1 übereinstimmt. Die quantitative Auswertung dieser Messungen ist jedoch durch konkurrierende Toluol- und Polymeren-Bildung erschwert und gestattet nicht, die Temperaturabhängigkeit der Abfangkurven mit hinreichender Genauigkeit zu bestimmen.

Ein zweiter Punkt für die Abfangkurve konnte jedoch mit 7 als Substrat erhalten werden. Thermolyse bei 62.5 °C in Benzol-Lösungen und unterschiedlichen SO<sub>2</sub>-Konzentrationen liefert die in Abb. 2 dargestellte Abfangkurve. Auch hier ist die Auswertung durch die Bildung von Nebenprodukten nicht sehr präzise.

Aus der Temperaturabhängigkeit der bei 155.6 und 62.5 °C ermittelten Abfangkurven (s. Abb. 2) ergibt sich für die Differenz der Aktivierungsenergien von Umlagerungsund Abfangreaktionen ein Wert von  $\Delta E_{\rm a} = 6.9$  kcal mol<sup>-1</sup>. Unterstellt man für die Abfangreaktion eine diffusionskontrollierte Reaktion, dann ergibt sich hierfür mit der Debye-Einstein-Beziehung eine Aktivierungsenergie von  $E_{\rm a}$ -(Diff) = 2.5 kcal mol<sup>-1(17)</sup>. Hiermit resultiert für die Enthalpie-Delle des Diradikals **2** 

 $\Delta H(109^{\circ}\text{C}) = \Delta E_a + E_a(\text{Diff}) - RT = 8.6 \text{ kcal mol}^{-1},$ 

die dem Wert aus den Sauerstoff-Abfang-Experimenten (8.2 kcal mol<sup>-1</sup>) nahekommt.

Ausgehend von dem Übergangszustand  $\text{TS}_{2,15}$  führt die aus den Abfangexperimenten abgeleitete Energiedelle von 8.2 kcal mol<sup>-1</sup> zu einer Bildungsenthalpie des Diradikals **2** von  $\Delta H_{\rm f}^0 = 78.0 - 8.2 = 69.8$  kcal mol<sup>-1</sup> (s. Abb. 3), der in Tab. 4 theoretische Erwartungswerte gegenübergestellt sind. Der experimentelle Wert wird vom MM2ERW-Kraftfeld<sup>[19]</sup> ausgezeichnet reproduziert, und sogar mit der einfachen C-H-Dissoziations-Methode<sup>[20]</sup> kommt man dem experimentellen Wert sehr nahe. Umso überraschender ist der weit abweichende AM1-Wert<sup>[23]</sup>, wobei die zugehörige Geometrie der Kraftfeld-Geometrie sehr nahe kommt.



Abb. 2. SO<sub>2</sub>-Abhängigkeit des Verhältnisses von U/A bei der Thermolyse von 5 (◆, 155.6 °C) und 7 (◊, 62.5 °C)

Tab. 4. Erwartungswerte für die Bildungsenthalpie [kcal mol<sup>-1</sup>] des Diradikals 2

| Methode        | exp.<br>diese Arbeit | C-H -<br>Dissoziation | MM2ERW-<br>Kraftfeld <sup>[19]</sup> | AM1[23]                             |
|----------------|----------------------|-----------------------|--------------------------------------|-------------------------------------|
| $\Delta H_f^0$ | 69.8                 | 70.51[20]             | 69.84                                | Triplett: 45.46<br>Singulett: 45.53 |

# 6. Cope Umlagerung $5 \rightarrow 15$

Die Konkurrenz von konzertierten und nichtkonzertierten Reaktionswegen bei [3.3]-sigmatropen Reaktionen wurden erstmalig bei der Cope-Umlagerung des 1,2,6,7-Octatetraens (31) beobachtet<sup>[2]</sup>, wobei offenblieb, welche Faktoren für den konzertierten und welche für den zweistufigen Reaktionskanal bedeutsam sind. Mit dem nunmehr vorliegenden zweiten Beispiel  $5 \rightarrow 15$  soll durch Vergleich mit der Cope-Reaktion des 1,5-Hexadiens (29) sowie den Phenylund Vinyl-substituierten Derivaten 32 und 34 versucht werden, hier eine Antwort zu finden.

Wie Tab. 5 zeigt, nehmen die Aktivierungsenthalpien der konzertierten und nichtkonzertierten Reaktionswege mit steigender Zahl von Allen-Einheiten ab. Bei den konzertierten Reaktionen läßt sich dieser Gang im Sinne des Hammond-Postulates<sup>[24]</sup> mit der zunehmenden Destabilisierung der Edukte verstehen. Jeweils die Hälfte der Reaktionsenthalpie-Differenz wird im Übergangszustand frei. Die Übergangszustands-Resonanzenergie<sup>[25]</sup> wird augenscheinlich von der Substitution nicht nennenswert tangiert.

Bei den nichtkonzertierten Reaktionen von 5 und 31 liegt der geschwindigkeitsbestimmende Übergangszustand um 13 bzw. 30 kcal mol<sup>-1</sup> über der Energie der resultierenden Diradikale 2 bzw. 3. Das entspricht in erster Näherung der Delokalisations-Energie dieser Diradikale und deutet an, daß im Übergangszustand die Allen-Geometrie mit der orthogonalen Anordnung der  $\pi$ -Orbitale weitgehend erhalten ist. Die zunehmend kleiner werdenden Aktivierungsschwellen sind hier, wie bei den konzertierten Reaktionen, vorrangig durch die Destabilisierung der Edukte bedingt.

Wie Tab. 5 zeigt, nimmt die Aktivierungsenergie für die Ringöffnung der intermediären Diradikale mit zunehmender



Tab. 5. Vergleich von konzertierten und zweistufigen Cope-Umlagerungen

<sup>a)</sup> Hypothetischer Wert, adjustiert am Kraftfeld-Wert des zugehörigen Diradikals. – <sup>b)</sup> Kraftfeld-Wert (MM2ERW<sup>[19]</sup>). – <sup>c)</sup> Diese Arbeit.

Stabilisierung der Diradikale zu. Auch dieser Trend läßt sich formal im Sinne des Hammond-Postulats<sup>[24]</sup> verstehen. Die Reaktionsenthalpien werden beim Übergang von 1 nach 3 zunehmend kleiner ( $\Delta H_R = 42.5$ , 31.1, 19.5 kcal mol<sup>-1</sup>), und der Übergangszustand rückt entsprechend mehr und mehr vom Diradikal fort. Die Enthalpiedifferenz zwischen Übergangszustand und Produkt bleibt dabei annähernd konstant ( $\Delta H^+ = 42.5$ , 38.8, 35.5 kcal mol<sup>-1</sup>).

Der Grund für die mit zunehmender Stabilisierung des Diradikals größer werdende Energiedelle liegt einmal in der zunehmenden Planarisierung der Moleküle. Immer mehr Energie ist erforderlich, um die aus der Stereochemie sich ableitende Sesselkonformation für den Übergangszustand der Ringöffnung<sup>[29]</sup> zu erreichen. Nach Kraftfeld-Rechnungen (s. Tab. 6) sind hierzu 7.6 (2) bzw. 9.3 (3) kcal  $mol^{-1}$  aufzubringen.

Tab. 6. Bildungsenthalpien [kcal mol<sup>-1</sup>] von Grundzustands- und Sesselkonformationen der Diradikale 1-3<sup>a)</sup>

| Konformation                   | 1    | 2             | 3    |
|--------------------------------|------|---------------|------|
| Grundzustand                   | 63.7 | 69.4          | 80.3 |
| Sessel-Geometrie <sup>b)</sup> | 64.0 | 7 <b>7</b> .0 | 89.6 |

<sup>a)</sup> MM2ERW-Kraftfeld<sup>[19]</sup>. - <sup>b)</sup> Torsionswinkel: 2-1-6-5 und  $3-4-5-6=60^{\circ}$ .

Ein weiterer Grund für die größer werdenden Energiedellen beim Übergang von 1 nach 3 liegt in der Grundzustands-Multiplizität, die in beiden Fällen ein Triplett-Zustand ist. Die Ringöffnung erfordert den Übergang in den Singulett-Zustand, für den mit größer werdender Wechselwirkung zwischen den Radikalen ein zunehmend größer werdender Energiebetrag aufzuwenden ist. Wie in Kap. 7 gezeigt wird, beträgt die Singulett-Triplett-Aufspaltung bei 2 1.4 kcal mol<sup>-1</sup> und kann bei 3 auf 7–8 kcal mol<sup>[30]</sup> abgeschätzt werden.

Die Cope-Umlagerung von 5 und 31 unterscheidet sich durch die tiefen Energiedellen der intermediären Diradikale 2 und 3 grundlegend von anderen [3.3]-sigmatropen Umlagerungen. Auch wenn eine vergleichbare Stabilisierung der hypothetischen intermediären 1.4-Cyclohexadiyle durch Phenyl- (32) oder Vinylgruppen (34) vorliegt, ist es hier bisher nicht gelungen, den zweistufigen Verlauf durch Abfangreaktionen experimentell nachzuweisen<sup>[31]</sup>. Im Gegensatz zu den Allengruppen begünstigen die Phenyl- und Vinylgruppen nicht nur den zweistufigen Reaktionskanal, sondern stabilisieren auch den Übergangszustand der konzertierten Reaktion (12.2 bzw. 9.1 kcal  $mol^{-1}$ , s. Tab. 5), womit die enthalpische Begünstigung der zweistufigen Cope-Umlagerung entfällt (32) oder sehr klein wird (34). Unbeschadet dieser ungünstigen Konkurrenzsituation ist das Scheitern der Abfangversuche von 33 und 35 durch die geringe kinetische Stabilität dieser Diradikale bedingt. Hier fehlen die bei 2 und 3 beobachteten hohen Konformations- und Multiplizitäts-Barrieren, so daß Abfang-Experimente nur bei sehr hohen Sauerstoff-Konzentrationen erfolgreich sein dürften.



Abb. 3. Hyperfläche [kcal mol<sup>-1</sup>] des Diradikals 2

# 7. Multiplizität

Informationen über die Grundzustands-Multiplizität des Diradikals 2 haben wir durch ESR-Messungen gesucht. Bei der Photolyse von 9 in einer Argonmatrix bei 22.4 K wurde das in Abb. 4 wiedergegebene ESR-Spektrum erhalten, das wir als Überlagerung eines Dublett-Signals mit dem eines typischen Triplett-Signals interpretieren, aus dem sich die Nullfeld-Parameter zu |D|/(hc) = 0.01901 und |E|/(hc) =0.00049 cm<sup>-1</sup> ergeben. Der aus dem D-Wert berechnete mittlere Abstand der Elektronen von 3.86 Å steht mit der Struktur des Diradikals 2 im Einklang. Für die Signalintensität wurde zwischen 22 und 35 K strenge Linearität gegen 1/T beobachtet, was mit einem Triplett-Grundzustand im Einklang steht. Das Halbfeldsignal ist mit geringer Intensität bei 169.3 mT zu beobachten.



Abb. 4. ESR-Spektrum von 2 bei 22.4 K, erhalten nach Bestrahlung einer Argonmatrix von 9 mit UV-Licht der Wellenlänge 330 nm

## 8. Singulett-Triplett-Aufspaltung

Um eine Aussage über die Größe der Singulett-Triplett-Aufspaltung des Diradikals 2 zu gewinnen, haben wir Sauerstoff-Abfang-Experimente durchgeführt. Wie mehrfach gezeigt wurde<sup>[30]</sup>, gelingt eine kinetische Differenzierung zwischen den Spin-Isomeren jedoch nur dann, wenn der Abfang der Diradikale bei niedriger Sauerstoff-Konzentration erfolgt. Damit scheidet 5 als Substrat aus, da hier Sauerstoffdrucke von 10-30 bar erforderlich sind, um zu meßbaren Abfanggeschwindigkeiten zu kommen (s. Kap. 5).



Abb. 5. Sauerstoffabhängigkeit von  $k_{per}$  bei der Thermolyse von 7

Sehr viel günstiger sind die Verhältnisse bei der Thermolyse von 7. Wie Abb. 5 zeigt, ergibt sich hier zwischen 70 und 100 °C eine nichtlineare Abhängigkeit der Geschwindigkeit der Peroxidbildung von der Sauerstoff-Konzentration. Dieser Kurvenverlauf läßt sich mit den in Schema 4 formulierten Reaktionen simulieren. Für die unter den Reaktionsbedingungen sehr langsam verlaufenden Reaktionen von 15 und 5 mit Sauerstoff wurden hierbei die zuvor bestimmten Geschwindigkeitskonstanten  $k_{15,25}$  bzw.  $k_{5,23}$ verwendet.

In Übereinstimmung mit diesem Reaktions-Schema beobachtet man bei Zugabe von SF<sub>6</sub> einen Anstieg der Peroxidbildung als Folge der jetzt erhöhten ISC-Geschwindigkeit. Diese Abhängigkeit der Abfanggeschwindigkeit von der SF<sub>6</sub>-Konzentration ist in Abb. 6 für einen Sauerstoffdruck von 100 mbar und einer Temperatur von 79 °C dargestellt, wobei die ausgezogene Kurve den mit Schema 4 simulierten Erwartungswert darstellt.



Abb. 6. Abhängigkeit der Peroxidbildung von der SF<sub>6</sub>-Konzentration bei 100 mbar  $O_2$  und 79 °C

Die Annahme einer Sauerstoff-katalysierten ISC-Reaktion ist im Hinblick auf den Ansatz einer stoßkontrollierten Geschwindigkeit für die Reaktion der Diradikale mit Sauerstoff überflüssig und führt auch nicht zu einer Verbesserung der Anpassung an die experimentellen Daten.

Die Auswertung der Abfangreaktion erfolgte in der Weise, daß die in Schema 4 formulierte Reaktion an die in Tab. 20 aufgelisteten Daten angepaßt wurde, wobei für die Optimierung eine Simplex-Routine<sup>[14]</sup> verwendet wurde. Die resultierenden Aktivierungsparameter sind in Tab. 2 aufgeführt, wobei die für das Triplett resultierende Energiedelle  $(2t \rightarrow 15)$  innerhalb der Fehlergrenze mit dem zuvor ermittelten Gleichgewichts-Wert  $(2 \rightarrow 15)$  übereinstimmt. Wie die Aktivierungsenergien der ISC-Geschwindigkeiten zeigen, stellt das Triplett-Diradikal 2t in Übereinstimmung mit den Ergebnissen der ESR-Messungen den Grundzustand dar, der 1.4 kcal mol<sup>-1</sup> unter dem Singulett 2s liegt.

Wie in Kap. 5 ausgeführt, sind auch hier die aus den Abfangexperimenten abgeleiteten A-Faktoren mit einem

größeren Unsicherheits-Intervall behaftet und dürften eine nur eingeschränkte Signifikanz besitzen.

Schema 4



Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit durch Sachmittel.

# **Experimenteller** Teil

# 1. Hydrierwärme-Messungen

Kalorimeter, Meßmethode sowie Genauigkeit sind in Lit.<sup>[9]</sup> beschrieben, die Daten der einzelnen Messungen in Tab. 7 zusammengestellt. Die Daten sind entsprechend Lit.<sup>[32]</sup> um die Lösungswärme-Effekte korrigiert, nicht jedoch um die Beiträge aus den Verdampfungswärmen.

Tab. 7. Daten der Hydrierwärme-Messungen

| - ΔH <sub>H</sub> e, f) | -H <sub>H</sub> e) | Energie <sup>d)</sup> | H <sub>2</sub> -c) | Kataly. <sup>b)</sup> | Titr <sup>a)</sup> | Sub-  |
|-------------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-------|
|                         |                    |                       | Verbr.             |                       | geschw.            | strat |
|                         | 98.49              | 5.4760                | 0.1668             | 0.0523 <sup>ba)</sup> | 0.5577             | 5     |
|                         | 98.21              | 5.6962                | 0.1740             | 0.0772 <sup>ba)</sup> | 0.5824             | 5     |
|                         | 98.19              | 6.6475                | 0.2031             | 0.0541 <sup>ba)</sup> | 0.6794             | 5     |
| $98.0\pm0.2^{ra}$       |                    |                       |                    |                       |                    |       |
|                         | 92.29              | 5.9247                | 0.1284             | 0.3886 <sup>ba)</sup> | 0.6432             | 6     |
| _                       | 92.61              | 5.7235                | 0.1236             | 0.5049 <sup>ba)</sup> | 0.6209             | 6     |
| 92.5±0.2 <sup>fb)</sup> |                    |                       |                    |                       |                    |       |
|                         | 88.93              | 5.9805                | 0.1345             | 0.0996ba)             | 0.6780             | 7     |
|                         | 88.99              | 6.0068                | 0.1350             | 0.0996ba)             | 0.6780             | 7     |
| 88.9±0.1 <sup>fb)</sup> |                    |                       |                    |                       |                    |       |
|                         | 84.87              | 5.2280                | 0.1848             | 0.0496bb)             | 0.6194             | 15    |
|                         | 84.67              | 5.2213                | 0.1850             | 0.0542ba)             | 0.6194             | 15    |
| 84.8±0.2fc)             |                    |                       |                    |                       |                    |       |

<sup>a)</sup>  $[mol \cdot s^{-1} \cdot 10^7]$ . - <sup>b)</sup> [g]. - <sup>c)</sup>  $[mol \cdot s^{-1} \cdot 10^6]$ . - <sup>d)</sup>  $[mcal \cdot s^{-1}]$ . - <sup>b)</sup> Korrigiert um Lösungswärme-Effekte. - <sup>ba)</sup> Pd/C (5%). - <sup>bb)</sup> Rh/C (5%). - <sup>fa)</sup> 100% *n*-Heptan. - <sup>fb)</sup> 100% Methylcyclohexan. - <sup>fc)</sup> 100% 3-Methylhexan.

#### 2. Kinetische Messungen

Die kinetischen Messungen in der Gasphase wurden mit der in Lit.<sup>[12]</sup> beschriebenen Apparatur und mit der dort angegebenen Meßtechnik vorgenommen. Die Auswertung erfolgte in den Fällen, in denen keine Geschwindigkeitskonstanten angegeben werden, durch Simulation, wobei die gesuchten Aktivierungsparameter direkt mit einer Simplex-Routine<sup>[14]</sup> an den jeweils alle Temperaturen umfassenden Satz von Meßdaten angepaßt wurde.

Die SO<sub>2</sub>-Abfangexperimente in Lösung wurden mit der Ampullen-Technik vorgenommen, wobei 2 ml große Ampullen mit jeweils 1.0 ml einer Benzol-Stammlösung aus Substrat und GC-Standard gefüllt wurden, in die dann eine definierte Menge SO<sub>2</sub> einkondensiert wurde. Für die Thermolyse stand ein Thermostat mit einer Temperaturkonstanz besser als  $\pm 0.1$  °C zur Verfügung. Die Produktzusammensetzung wurde über eine kombinierte GC- (Kohlenwasserstoffe)/HPLC-Analytik (Sulfone) bestimmt.

Thermolyse von 7: Die Gasphasen-Thermolyse von 7 führt zu zwei Produkten, die durch Vergleich mit authentischen Proben als 3-Methylen-1,5-hexadien (15) und 1,2,6-Heptatrien (5) identifiziert wurden. Die Konzentrationsverhältnisse der Produkte waren zeitunabhängig, und die beobachteten Konzentrationsänderungen gehorchten einem Geschwindigkeitsgesetz erster Ordnung. Die ermittelten Geschwindigkeitskonstanten sind in Tab. 8 aufgelistet.

Tab. 8. Geschwindigkeitskonstanten der Thermolyse von 7<sup>[8]</sup>

| T [°C]                                                   | 70.59 | 81.69 | 92.19 | 102.48 | 112.76         | 123.23 |
|----------------------------------------------------------|-------|-------|-------|--------|----------------|--------|
| k <sub>7,15</sub> . 10 <sup>5</sup> [s <sup>-1</sup> ]   | 2.287 | 8.089 | 24.83 | 70.640 | 188.96         | 476.84 |
| k <sub>7,5</sub> . 10 <sup>5</sup> [s <sup>-1</sup> ]    | 0.479 | 2.037 | 6.811 | 22.055 | <b>58.92</b> 1 | 152.42 |
| k <sub>7,5+15</sub> . 10 <sup>5</sup> [s <sup>-1</sup> ] | 2.282 | 8.041 | 24.96 | 72.106 | 191.87         | 483.07 |

Die SO<sub>2</sub>-Abfangversuche bei der Thermolyse von 7 führten neben den Umlagerungsprodukten (5, 15) und den Sulfonen (16, 17) zu nicht identifizierten Verbindungen, die bei Blindversuchen mit 5, 15, 16 und 17 nicht gebildet werden, und von denen daher unterstellt wurde, daß sie sich direkt von 7 ableiten und das Verhältnis der Abfangprodukte nicht verändern. Die Thermolysen wurden jeweils bei 62.5 °C mit einer Substratkonzentration von 27.82 mmol  $1^{-1}$ über 50400 s durchgeführt. Die resultierende Produktzusammensetzung ist in Tab. 9 aufgeführt. Eine quantitative HPLC-Trennung der Sulfone gelang mit einer RP 18-3 $\mu$ -Säule mit Wasser/Acetonitril (91:9).

Tab. 9. Daten der Lösungs-Thermolyse von 7 in Gegenwart von SO<sub>2</sub>

| SO <sub>2</sub><br>[mol/l] | 7<br>[%] | 5<br>[%] | 15<br>[%] | 16<br>[%] | 17<br>[%] | <u>15+16</u><br>17 |
|----------------------------|----------|----------|-----------|-----------|-----------|--------------------|
| 0.000                      | 28.58    | 69.69    | 1.73      | 0.00      | 0.00      | -                  |
| 0.106                      | 25.34    | 4.70     | 0.00      | 3.08      | 60.91     | 0.128              |
| 0.139                      | 25.43    | 3.30     | 0.00      | 2.48      | 63.90     | 0.090              |
| 0.189                      | 25.45    | 2.22     | 0.00      | 3.25      | 65.47     | 0.084              |
| 0.251                      | 26.30    | 1.51     | 0.00      | 2.77      | 64.68     | 0.066              |
| 0.429                      | 25.08    | 0.63     | 0.00      | 0.93      | 66.43     | 0.024              |

Thermolyse von 7 a: Die Thermolyse erfolgte in der Gasphase in der in Lit.<sup>[12]</sup> beschriebenen Apparatur. Die Produktverteilung

wurde gaschromatographisch und das *exo-endo*-Verhältnis durch <sup>2</sup>H-NMR-Spektroskopie bestimmt.

Tab. 10. Produktverteilung bei der Thermolyse von 7a bei 81.5°C<sup>[8]</sup>

| Zeit  | 7a     | 7     | 15    | 5    |
|-------|--------|-------|-------|------|
| [s]   | [%]    | [%]   | [%]   | [%]  |
| 0     | 100.00 | 0.00  | 0.00  | 0.00 |
| 4170  | 52.45  | 11.51 | 34.86 | 1.18 |
| 10590 | 29.48  | 12.04 | 56.73 | 1.75 |

Thermolyse von 6: Die Kinetik der Umlagerung von 6 wurde in Gegenwart von 600 Torr SF<sub>6</sub> als Stoßpartner gemessen. Die Umlagerungsprodukte 5 und 15 zeigen ein zeitabhängiges Konzentrationsverhältnis (s. Tab. 12). Die hieraus abgeleiteten Geschwindigkeitskonstanten erster Ordnung für die Abnahme des Substrates sind in Tab. 11 zusammengestellt.

Tab. 11. Geschwindigkeitskonstanten der Thermolyse von 6

| T [°C]                                                   | 145.37 | 151.21 | 156.56 | 168.72 | 174.75 | 186.74 |
|----------------------------------------------------------|--------|--------|--------|--------|--------|--------|
| k <sub>6,15+5</sub> . 10 <sup>5</sup> [s <sup>-1</sup> ] | 5.00   | 9.15   | 15.3   | 47.7   | 82.7   | 242.0  |

Tab. 12. Daten der Thermolyse von 6

| Temp   | Zeit  | 6     | 5    | 15    |
|--------|-------|-------|------|-------|
| [°C]   | [8]   | [%]   | [%]  | [%]   |
| 145.37 | 150   | 99.37 | 0.15 | 0.49  |
|        | 1600  | 92.69 | 0.77 | 6.54  |
|        | 4000  | 82.73 | 1.46 | 15.81 |
|        | 7150  | 70.29 | 2.52 | 27.19 |
|        | 12950 | 53.19 | 3.95 | 42.86 |
|        | 17100 | 43.37 | 4.58 | 52.05 |
| 151.21 | 160   | 98.82 | 0.23 | 0.95  |
|        | 1400  | 88.75 | 1.08 | 10.17 |
|        | 3600  | 72.72 | 2.64 | 24.64 |
|        | 7700  | 50.37 | 4.30 | 45.32 |
|        | 11300 | 36.40 | 5.33 | 58.28 |
|        | 11900 | 34.46 | 5.40 | 60.13 |
| 156.56 | 160   | 97.76 | 0.70 | 1.54  |
|        | 1000  | 86.65 | 1.60 | 11.75 |
|        | 2600  | 67.96 | 3.39 | 28.65 |
|        | 4600  | 50.21 | 4.82 | 44.97 |
|        | 6300  | 38.88 | 5.63 | 55.50 |
|        | 8900  | 26.08 | 6.36 | 67.56 |
|        | 10000 | 22.14 | 6.47 | 71.39 |
| 168.72 | 150   | 94.47 | 0.91 | 4.48  |
|        | 650   | 75.64 | 2.48 | 21.88 |
|        | 1850  | 42.73 | 5.52 | 51.75 |
|        | 2700  | 28.55 | 6.61 | 64.85 |
|        | 3600  | 18.54 | 7.05 | 74.42 |
|        | 3990  | 15.37 | 7.19 | 77.43 |
| 174.75 | 150   | 91.36 | 1.22 | 7.42  |
|        | 1050  | 43.82 | 5.87 | 50.31 |
|        | 1450  | 31.78 | 6.61 | 61.61 |
|        | 1900  | 21.67 | 7.56 | 70.78 |
|        | 2450  | 14.00 | 7.52 | 78.48 |
| 186.74 | 100   | 85.38 | 1.54 | 13.08 |
|        | 450   | 38.24 | 6.07 | 55.69 |
|        | 800   | 16.32 | 7.73 | 75.95 |
|        | 1150  | 6.96  | 7.97 | 85.07 |

Thermolyse von 8: Die Kinetik der Zersetzung von 8 wurde in Gegenwart von 200 Torr SF<sub>6</sub> als Stoßpartner gemessen. Die Reak-



tionsprodukte 5, 7 und 15 zeigen ein zeitabhängiges Konzentrationsverhältnis (s. Tab. 15). Die hieraus sich ergebenden Geschwindigkeitskonstanten erster Ordnung für die Abnahme des Substrats sind in Tab. 14 aufgelistet. Tab. 16. Daten der Thermolyse von 5 in Gegenwart von Sauerstoff

Thermolyse von 5: Die Sauerstoff-Abfang-Kinetik von 5 wurde mit der in Lit.<sup>[13]</sup> beschriebenen Apparatur und mit der dort angegebenen Meßtechnik vorgenommen. Die einzelnen Meßdaten sind in Tab. 16 aufgelistet.

Tab. 13. Vergleich der experimentellen und berechneten Druckabhängigkeit der auf t = 0 extrapolierten Produktverteilung bei der Thermolyse von 6 bei 155.8 °C

| SF <sub>6</sub> [Torr] | 707.3 | 109.3 | 50.5 | 9.8  | 3.9  | 0.1  |
|------------------------|-------|-------|------|------|------|------|
| 15/5 exp.              | 10.05 | 9.98  | 9.89 | 9.47 | 9.34 | 9.20 |
| 15/5 ber.              | 11.10 | 9.55  | 9.38 | 9.23 | 9.23 | 9.23 |

Tab. 14. Geschwindigkeitskonstante der Thermolyse von 8

| T [°C]                                         | 112.85 | 124.50 | 133.62 | 144.16 | 155.95 | 167.35 |
|------------------------------------------------|--------|--------|--------|--------|--------|--------|
| k8.5+7+15 · 10 <sup>5</sup> [s <sup>-1</sup> ] | 6.5321 | 22.621 | 57.113 | 158.25 | 463.99 | 1272.2 |

Tab. 15. Daten der Thermolyse von 8

| Temp   | Zeit  | 8     | 5    | 7    | 15             |
|--------|-------|-------|------|------|----------------|
| [°C]   | [s]   | [%]   | [%]  | [%]  | [%]            |
| 112.85 | 100   | 98.96 | 0.00 | 0.19 | 0.85           |
|        | 1200  | 92.15 | 0.12 | 0.59 | 7.14           |
|        | 2900  | 82.45 | 0.31 | 0.60 | 16.64          |
|        | 7600  | 60.59 | 0.77 | 0.42 | 38.22          |
|        | 13700 | 40.74 | 1.13 | 0.27 | 57.86          |
|        | 16900 | 33.08 | 1.25 | 0.21 | 65.46          |
|        | 18800 | 29.20 | 1.33 | 0.19 | 69.28          |
|        | 21800 | 23.95 | 1.48 | 0.15 | 74.42          |
| 124.50 | 100   | 97.55 | 0.00 | 0.35 | 2.10           |
|        | 600   | 87.05 | 0.25 | 0.72 | 11.98          |
|        | 1600  | 69.47 | 0.61 | 0.60 | 29.32          |
|        | 2600  | 55.30 | 0.94 | 0.48 | 43.28          |
|        | 3600  | 44.23 | 1.17 | 0.38 | 54.22          |
|        | 5200  | 30.86 | 1.45 | 0.22 | <b>67.</b> 47  |
|        | 6200  | 24.55 | 1.61 | 0.22 | 73.62          |
|        | 8200  | 15.54 | 1.81 | 0.10 | 82.55          |
|        | 10700 | 8.91  | 1.92 | 0.07 | 89.10          |
|        | 12700 | 5.63  | 1.96 | 0.00 | 92.41          |
| 133.62 | 100   | 94.77 | 0.07 | 0.68 | 5.09           |
|        | 600   | 70.77 | 0.63 | 0.72 | 27.88          |
|        | 1100  | 53.21 | 1.04 | 0.56 | 45.19          |
|        | 1600  | 40.10 | 1.31 | 0.41 | 58.18          |
|        | 2100  | 29.96 | 1.61 | 0.28 | 68.15          |
|        | 2600  | 22.58 | 1.76 | 0.24 | 75.42          |
|        | 3100  | 16.98 | 1.90 | 0.17 | 80.95          |
|        | 3600  | 12.71 | 2.00 | 0.13 | 85.16          |
|        | 4170  | 9.69  | 2.02 | 0.09 | 88.20          |
| 144.16 | 100   | 85.26 | 0.32 | 0.95 | 13.47          |
|        | 600   | 38.64 | 1.55 | 0.48 | 59.33          |
|        | 1100  | 17.46 | 2.07 | 0.20 | 80.27          |
|        | 1600  | 8.07  | 2.28 | 0.08 | 89.57          |
|        | 2100  | 3.59  | 2.35 | 0.00 | 94.06          |
|        | 2800  | 1.16  | 2.42 | 0.00 | 96.42          |
| 155.95 | 100   | 62.52 | 1.00 | 0.93 | 35.55          |
|        | 500   | 9.79  | 2.43 | 0.15 | 87.63          |
|        | 900   | 1.54  | 2.67 | 0.00 | 95.79          |
|        | 1300  | 0.37  | 2.66 | 0.00 | 96. <b>9</b> 7 |

|       |            |                | ~~~            |              |       |            |             |                |                |
|-------|------------|----------------|----------------|--------------|-------|------------|-------------|----------------|----------------|
| Temp. | Sauerstoff | Zeit           | 5              | 15           | Temp. | Sauerstoff | Zeit        | 5              | 15             |
| (C°)  | [mol 1-1]  | [s]            | [%]            | [%]          | [Cº]  | [mol ]-1]  | [s]         | [%]            | [%]            |
| 140.2 | 0 1452     | 0              | 09.71          | 1 20         |       | 0.9440     |             | 05.95          | 4.15           |
| 149.2 | 0.1452     | 10800          | 80.45          | 14.08        |       | 0.6440     | 3700        | 66.56          | 16.84          |
|       |            | 14400          | 75.63          | 17.57        |       |            | 5600        | 55.12          | 20.55          |
|       |            | 18000          | 70.54          | 21.04        | Ì     |            | 7500        | 45.84          | 23.54          |
|       |            | 21600          | 66.05          | 24.44        |       |            | 9400        | 38.01          | 25.63          |
|       |            | 23300          | 58.20          | 27.23        |       |            | 13200       | 26.83          | 20.82          |
|       | 0.3133     | 0              | 98.65          | 1.35         |       |            | 15100       | 22.40          | 28.01          |
|       |            | 7200           | 84.79          | 9.34         |       |            | 17000       | 19.09          | 28.12          |
|       |            | 10800          | 79.36          | 12.59        | 100.0 | 0 1060     | 18900       | 15.60          | 28.29          |
|       |            | 21600          | 70.15<br>64.96 | 18.57        | 180.9 | 0.1000     | 1850        | 64.72          | 29.44          |
|       |            | 28800          | 56.93          | 26.09        |       |            | 3700        | 45.88          | 44.40          |
|       |            | 32400          | 53.22          | 28.18        |       |            | 7400        | 23.26          | 62.62          |
|       | 0.5980     | 0              | 98.56          | 1.44         |       |            | 9250        | 16.25          | 66.63          |
|       |            | 3000           | 91.31<br>85.57 | 5.15<br>8.61 |       | 0.1589     | 0           | 91.62          | 8.38           |
|       |            | 10800          | 79.77          | 11.70        |       | 0.1200     | 1800        | 65.30          | 28.98          |
|       |            | 14400          | 73.96          | 14.53        |       |            | 3600        | 46.81          | 43.22          |
|       |            | 18000          | 69.15          | 17.07        |       |            | 5400        | 33.28          | 52.83          |
|       |            | 21600          | 64.26<br>50.86 | 19.26        |       |            | 9000        | 25.05          | 59.47<br>63.73 |
|       |            | 32400          | 59.80          | 21.57        | ]     |            | 10800       | 12.15          | 66.95          |
|       | 0.8828     | 0              | 98.55          | 1.45         | 1     | 0.2913     | 0           | 92.64          | 7.36           |
|       |            | 3600           | 92.35          | 4.99         | 1     |            | 1800        | 64.95          | 25.72          |
|       |            | 10800          | 79.38          | 10.95        |       |            | 3600        | 45.58          | 37.81          |
|       |            | 13200          | /3.28<br>69.31 | 15.75        |       |            | 7200        | 22.72          | 50.21          |
|       |            | 21600          | 64.38          | 17.53        |       |            | 10850       | 11.21          | 54.83          |
|       |            | 29200          | 54.98          | 20.81        |       | 0.4238     | 0           | 91.90          | 8.10           |
| 158.6 | 0.3064     | 0              | 97.48          | 2.52         |       |            | 1800        | 62.78          | 24.38          |
|       |            | 10800          | 83.15<br>63.71 | 10.90        |       |            | 5400        | 43.38          | 40.50          |
|       |            | 14400          | 55.88          | 29.17        |       |            | 7200        | 21.35          | 44.05          |
|       | 0.4457     | 0              | 97.73          | 2.27         |       |            | 9000        | 14.93          | 45.20          |
|       |            | 3600           | 83.97          | 10.16        |       |            | 10850       | 9.96           | 45.53          |
|       |            | 10800          | 72.72          | 16.98        |       | 0.5563     | 1800        | 92.82<br>64 30 | 23.02          |
|       |            | 14400          | 55.56          | 27.03        | 1     |            | 3600        | 43.73          | 31.70          |
|       |            | 18000          | 47.69          | 30.60        | 1     |            | 5450        | 29.52          | 36.41          |
|       |            | 21600          | 41.30          | 33.46        | l     |            | 7300        | 20.19          | 38.37          |
|       |            | 25200          | 35.84          | 36.10        |       | 0.9212     | 9150        | 13.87          | 39.47          |
|       | 0.5850     | 20000          | 97.70          | 2.30         |       | 0.6212     | 1850        | 58.18          | 21.02          |
|       |            | 3800           | 83.58          | 10.26        |       |            | 3700        | 38.35          | 26.73          |
|       |            | 7200           | 72.55          | 16.16        |       |            | 5550        | 25.47          | 28.90          |
|       |            | 15300          | 52.57          | 25.97        |       |            | 7400        | 10.90          | 29.46          |
|       |            | 21600          | 47.50          | 30.62        |       |            | 11100       | 7.85           | 29.10          |
|       |            | 25200          | 35.18          | 32.59        | 191.2 | 0.1554     | 0           | 85.15          | 14.85          |
|       |            | 27700          | 31.77          | 33.24        |       |            | 925         | 58.08          | 33.84          |
|       | 0 7 7 3 4  | 32000          | 27.25          | 35.33        |       |            | 1950        | 39.85<br>28.58 | 48.10          |
|       | 0.7234     | 3600           | 83.33          | 9.54         |       |            | 3800        | 19.93          | 61.93          |
|       |            | 7200           | 71.57          | 15.33        |       |            | 4725        | 14.11          | 65.93          |
|       |            | 13400          | 56.10          | 22.38        |       | 0.2849     | 0           | 86.97          | 13.03          |
|       |            | 20000          | 42.59          | 27.50        | 1     |            | 925         | 42 32          | 30.04<br>42.23 |
|       |            | 26200          | 32.80          | 30.11        |       |            | 2675        | 31.14          | 48.58          |
|       |            | 28800          | 29.19          | 31.09        |       |            | 3700        | 20.68          | 53.96          |
|       | 0.8636     | 0              | 97.32          | 2.68         | ł     |            | 4625        | 14.43          | 56.24          |
|       |            | 3600           | 82.47          | 9.73         |       | 0.4114     | 025         | 87.73<br>57.32 | 12.25          |
|       |            | 14400          | 51.90          | 21.94        | 1     |            | 1850        | 39.52          | 37.18          |
|       |            | 18000          | 44.66          | 24.52        |       |            | 2775        | 27.35          | 42.45          |
|       |            | 21600          | 37.94          | 26.08        |       |            | 3700        | 18.85          | 45.44          |
|       |            | 25200          | 32.35          | 27.27        | 1     |            | 4/25        | 0.11           | 47.28          |
| 168.9 | 0.1624     | 20000          | 96.13          | 3.87         | 1     | 0.5443     | 0           | 87.85          | 12.15          |
|       |            | 3600           | 70.33          | 21.96        | [     |            | 925         | 60.05          | 27.13          |
|       |            | 8500           | 47.45          | 38.70        |       |            | 1850        | 41.02          | 35.69          |
|       |            | 11700          | 36.59          | 46.06        | 1     |            | 2775        | 28.42          | 39.90          |
|       |            | 18900          | 20.47          | 55.82        |       |            | 4625        | 13.34          | 42.26          |
|       |            | 22500          | 15.44          | 58.58        | 1     |            | 5550        | 9.31           | 42.21          |
|       |            | 26100          | 11.52          | 59.56        |       | 0.6737     | 0           | 88.11          | 11.89          |
|       | 0.3537     | 2600           | 95.44          | 4.56         |       |            | 925<br>1850 | 54.60<br>36.44 | 24.04          |
|       |            | 3000<br>7200   | 08.39<br>49.47 | 20.99        |       |            | 2775        | 24.70          | 32.95          |
|       |            | 10800          | 36.91          | 37.46        | 1     |            | 3700        | 16.81          | 34.36          |
|       |            | 14400          | 27.34          | 41.89        | }     |            | 4625        | 11.37          | 33.89          |
|       |            | 18000          | 19.96          | 44.71        |       |            | 5550        | 7.67           | 32.78          |
|       |            | 21000<br>25200 | 10.01          | 4/.14        |       |            |             |                |                |
|       | 0.7074     | 0              | 95.70          | 4.30         | 1     |            |             |                |                |
|       |            | 3600           | 66.38          | 17.12        |       |            |             |                |                |
|       |            | 7200           | 47.74          | 24.52        | 1     |            |             |                |                |
|       |            | 10800          | 54.03<br>24 55 | 28.58        | 1     |            |             |                |                |
|       |            | 18000          | 17.59          | 31.36        |       |            |             |                |                |
|       |            | 21600          | 12.97          | 31.14        | 1     |            |             |                |                |

Die  $SO_2$ -Abfang-Versuche von 5 liefern neben 15, 16 und 17 auch Toluol und Polymere. Wie Blindversuche mit den einzelnen Produkten zeigten, ist das Edukt für die Toluol-Bildung verantwortlich, während alle Reaktionsteilnehmer zum Massenverlust (Polymerenbildung) beitragen. Es wurde daher davon ausgegangen, daß diese Nebenprodukte das Verhältnis von Umlagerungs- zu Abfangprodukten nicht beeinträchtigen.

Alle Thermolysen wurden bei 155.6 °C mit einer Substratkonzentration von 8.397 mmol  $1^{-1}$  über 18000 s durchgeführt. Die Produktzusammensetzung der einzelnen Läufe ist in Tab. 17 zusammengestellt. Eine quantitative HPLC-Trennung der Sulfone gelang mit einer RP 18-3  $\mu$ -Säule mit Wasser/Acetonitril (91:9).

Tab. 17. Daten der Lösungs-Thermolyse von 5 in Gegenwart von SO<sub>2</sub>

| SO <sub>2</sub>               | 5     | 15    | 16   | 17    | 15+16 |
|-------------------------------|-------|-------|------|-------|-------|
| [mol <i>t</i> <sup>-1</sup> ] | [%]   | [%]   | [%]  | [%]   | 17    |
| 0.000                         | 35.18 | 64.82 | 0.00 | 0.00  | -     |
| 0.116                         | 36.75 | 45.75 | 1.03 | 15.89 | 2.981 |
| 0.139                         | 37.89 | 44.08 | 1.77 | 16.26 | 2.820 |
| 0.263                         | 39.54 | 37.53 | 2.50 | 20.43 | 1.959 |
| 0.334                         | 39.46 | 35.49 | 3.20 | 21.85 | 1.771 |
| 0.424                         | 40.31 | 33.38 | 3.85 | 22.58 | 1.649 |
| 0.524                         | 40.73 | 31.10 | 3.96 | 24.21 | 1.448 |
| 0.653                         | 40.05 | 28.21 | 5.41 | 26.33 | 1.276 |

Tab. 18. Produktverteilung bei der Photolyse von 8

| Bedingungen | Lösungs-                        | Т    | 5    | 6   | 7    | 15           | 21   | 22  |
|-------------|---------------------------------|------|------|-----|------|--------------|------|-----|
|             | mittel                          | [°C] | [%]  | [%] | [%]  | [%]          | [%]  | [%] |
| HPK/Pyrex   | CH <sub>2</sub> Cl <sub>2</sub> | -70  | 0.6  | 0.0 | 9.5  | 89.6         | 0.0  | 0.0 |
| HPK/Pyrex   | $CH_2Cl_2$                      | 0    | 1.8  | 0.0 | 17.2 | 81.0         | 0.0  | 0.0 |
| 300nm/Ph2CO | Benzol                          | 35   | 1.9  | 0.0 | 16.6 | 70.6         | 11.0 | 0.0 |
| 254nm/Quarz | C <sub>6</sub> H <sub>12</sub>  | 35   | 11.6 | 8.5 | 16.4 | <b>59</b> .2 | 1.4  | 2.7 |

Tab. 19. Produktvcrteilung bei der Photolyse von 9

| Bedingungen | Lösungs- | Т    | 5   | 7    | 15   | 21   | 22  |
|-------------|----------|------|-----|------|------|------|-----|
|             | mittel   | [°C] | [%] | [%]  | [%]  | [%]  | [%] |
| HPK/Quarz   | Pentan   | -50  | 0.9 | 14.3 | 83.7 | 0.0  | 0.0 |
| HPK/Quarz   | Pentan   | 20   | 2.2 | 21.4 | 66.1 | 2.8  | 0.0 |
| HPK/Ph2CO   | Pentan   | 20   | 1.6 | 18.2 | 27.2 | 52.4 | 0.0 |

Thermolyse von 7: Die Sauerstoff-Abfang-Kinetik von 7 wurde mit der in Lit.<sup>[12]</sup> beschriebenen Apparatur und mit der dort angegebenen Meßtechnik vorgenommen. Die einzelnen Meßdaten sind in Tab. 20 aufgelistet.

# 3. RRKM-Rechnungen<sup>[33]</sup>

Die Schwingungsfrequenzen des Diradikals 2 wurden AM1-Rechnungen<sup>[23]</sup> entnommen. Für die Übergangszustände  $2 \rightarrow 15$ und  $2 \rightarrow 5$  wurde der gleiche Frequenzsatz verwendet, der im Sinne der "klassischen intuitiven" Vorgehensweise vom Diradikal abgeleitet wurde, wobei die Frequenz bei 1558 cm<sup>-1</sup> als kritische Koordinate gewählt und die übrigen Frequenzen an die experimentelle Aktivierungscntropie  $2 \rightarrow 15$  adjustiert wurden. Für die Berechnung der Summe der Zustände des aktivierten Komplexes wurde der Zählalgorithmus nach Beyer und Swinehart<sup>[34]</sup>, für die Zustandsdichte des Diradikals die Näherung nach Whitten und Rabinovitch<sup>[35]</sup> herangezogen. Das Stoßintegral für die Berechnung der Lennard-Jones-Stoßzahl wurde nach Troe<sup>[36]</sup> angenähert. Für die mittlere Stufenhöhe DE der Desaktivierung wurde der von Troe<sup>[37]</sup> für SF<sub>6</sub> angegebene Wert von 2.29 kcal mol<sup>-1</sup> verwendet. Der Stoßquerschnitt von **2** wurde aus Modellen zu 6.9 Å abgeschätzt, für SF<sub>6</sub> ein Wert von 5.128 Å<sup>[38]</sup> angenommen.

#### 4. Synthesen

2,4-Cyclohexadiencarbonsäure-methylester (12)<sup>[39]</sup>: Eine Lösung von 9.8 g (0.11 mol) frisch destilliertem Acrylsäure-methylester und 9.8 g (0.10 mol)  $\alpha$ -Pyron in 10 ml Toluol wird 48 h bei 7 kbar auf 60 °C erhitzt (Teflonschlauch-Technik)<sup>[40]</sup>. Nach Entfernen des Lösungsmittels i.Vak. wird der Rückstand i.Vak. (30–40 Torr) erhitzt. Zwischen 130 und 150 °C destillieren 10.9 g (79 mmol) 12 über, das in seinen spektroskopischen Eigenschaften mit den Daten der Lit.<sup>[39]</sup> übereinstimmt.

5-(Mesyloxymethyl)-1,3-cyclohexadien: Zu einer eisgekühlten Suspension von 6.1 g (0.16 mol) LiAlH<sub>4</sub> in 200 ml wasserfreiem Ether tropft man unter Rühren eine Lösung aus 29.35 g (0.21 mol) 12 in 130 ml Ether innerhalb 1.5 h so, daß die Reaktionsmischung leicht siedet. Es wird 3 h unter Rückfluß erhitzt, mit Eiswasser und anschließend mit 10proz. H<sub>2</sub>SO<sub>4</sub> hydrolysiert, in Dichlormethan aufgenommen und nach Trocknen mit Natriumsulfat und Entfernen des Lösungsmittels i.Vak. destilliert. Bei 73-74°C/15 Torr werden 19.9 g (0.18 mol) des Alkohols erhalten, der mit 27.3 g (0.27 mol) mit AlH<sub>4</sub> getrocknetem Triethylamin in 900 ml Dichlormethan gelöst wird. Die Lösung wird bei 0°C mit 22.8 g (0.2 mol) Methansulfonylchlorid versetzt, die Mischung 1 h auf 0°C gehalten, mit 400 ml Eiswasser versetzt, die organische Phase mit 10proz. HClund anschließend mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen und dann mit Magnesiumsulfat getrocknet. Nach Entfernen des Lösungsmittels i.Vak. werden 33.8 g (0.18 mol) des Mesylats erhalten. – IR (Film):  $\tilde{v} = 3040 \text{ cm}^{-1}$ , 2940, 2870, 2830, 1360, 1175. – <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 2.1 - 2.6$  (m, 2H), 2.5 - 2.8 (m, 1 H), 3.0 (s, 3 H), 4.1 (d, 2 H), 5.5 - 6.0 (m, 4 H). - MS (70 eV), m/z (%): 188 (0.4) [M<sup>+</sup>], 109 (4), 92 (100), 79 (78).

5-Methylen-2,3-diazabicyclo[2.2.2]oct-2-en (8): 33.8 g (0.18 mol) des Mesylats werden in 150 ml Dichlormethan unter Eiskühlung mit einer Lösung von 22.5 g (0.2 mol) Methyltriazolindion in 300 ml Dichlormethan versetzt, wobei die rote Farbe spontan verschwindet. Nach Entfernen des Lösungsmittels i.Vak wird der Rückstand erneut in 1000 ml Dichlormethan gelöst, mit 1 g Palladium/Kohle (10%) versetzt und hydriert. Nach Aufnahme von 2550 ml Wasserstoff wird unterbrochen, der Katalysator abfiltriert und das Lösungsmittel i.Vak. entfernt. 11 g (36 mmol) des Rückstands werden ohne weitere Reinigung in 200 ml Benzol gelöst, die Lösung wird mit 14 g (125 mmol) Kalium-tert-butylat versetzt und 3 h bei Raumtemp, gerührt. Nach Versetzen mit 400 ml Wasser und 200 ml Dichlormethan wird die organische Phase abgetrennt, mit Wasser gewaschen und mit Kaliumcarbonat getrocknet. Der nach Entfernen des Lösungsmittels i.Vak. verbleibende Rückstand wird in 40 ml Methanol gelöst, die Lösung mit 10 g KOH versetzt und 1 h unter Rückfluß erhitzt. Mit 50proz. HCl wird auf pH 2 angesäuert, mit Natriumacetat auf pH 4 gebracht und mit einer Lösung aus 8 g Kupfer(II)-chlorid · 2 H<sub>2</sub>O in 20 ml Wasser versetzt. Nach 1 h wird der braunrote Kupferkomplex über eine Nutsche abfiltriert und mit Wasser und Ether gewaschen. Aus dem erneut auf pH 4 gebrachten und mit Kupferchloridlösung versetzten Filtrat fällt in ca. 12 h weiterer Kupferkomplex aus. Die vereinigten Chargen werden über Phosphorpentoxid im Exsikkator getrocknet. 2 g des Komplexes werden in 20 ml 25proz. Ammoniak gegeben, die Mischung wird mit 50 ml Ether überschichtet und 30 min gerührt. Die organische Phase wird mit Natriumsulfat getrocknet und i.Vak. (180 Torr) auf 3 ml eingeengt. Nach Entfernen des restlichen Lösungsmittels i.Vak. destillieren aus dem Rückstand bei 40-50 °C/

| Tak  | 20  | Datas | 4   | Thermol |     |     | - | : | Canant    |     | Concertoff |
|------|-----|-------|-----|---------|-----|-----|---|---|-----------|-----|------------|
| Tab. | 20. | Daten | der | Thermor | yse | von | 1 | m | Gegenwart | von | Sauerston  |

| Temp. | SF6                                     | Sauer-<br>stoff | Zeit           | 7                       | 15             | 5            | Temp. | SF <sub>6</sub> | Sauer-<br>stoff | Zeit           | 7              | 15             | 5            | Temp. | SF6    | Sauer-<br>stoff | Zeit           | 7              | 15             | 5            | Temp. | SF <sub>5</sub> | Sauer-<br>stoff | Zeit           | 7              | 15             | 5            |
|-------|-----------------------------------------|-----------------|----------------|-------------------------|----------------|--------------|-------|-----------------|-----------------|----------------|----------------|----------------|--------------|-------|--------|-----------------|----------------|----------------|----------------|--------------|-------|-----------------|-----------------|----------------|----------------|----------------|--------------|
| [C°]  | [mbar]                                  | [mbar]          | [8]            | [%]                     | [%]            | [%]          | [C°]  | [mbar]          | [mbar]          | [s]            | [%]            | [%]            | [%]          | [C°]  | [mbar] | [mbar]          | [s]            | [%]            | [%]            | [%]          | [C°}  | [mbar]          | [mbar]          | [s]            | [%]            | [%]            | [%]          |
| 71.7  | 3.76                                    | 0.00            | 0              | 95.50                   | 4.37           | 0.13         |       |                 |                 | 17180          | 60.67          | 28.94          | 0.78         |       |        |                 | 21460          | 24.32          | 69.77          | 1.82         | 79.0  | 0.00            | 997.50          | 0              | 90.45          | 9.25           | 0.30         |
|       |                                         |                 | 4700           | 84.91                   | 14.74          | 0.35         |       |                 |                 | 25000          | 49.43          | 36.95          | 0.90         |       |        |                 | 25420<br>25820 | 18.66          | 72.95          | 1.87         |       |                 |                 | 3700           | 79.00          | 20.55          | 0.50         |
|       |                                         |                 | 8200<br>12100  | 77.69<br>70.29          | 21.82<br>29.04 | 0.49         |       |                 |                 | 27900<br>38000 | 45.83<br>35.11 | 39.57<br>47.23 | 1.08         |       |        |                 | 27610<br>29570 | 16.72<br>14.86 | 76.71<br>78.66 | 1.95<br>2.02 |       |                 |                 | 5400<br>9900   | 63.69<br>47.56 | 24.89<br>34.24 | 0.75         |
|       |                                         |                 | 15800          | 63.88<br>57.96          | 35.31<br>41.06 | 0.81         |       |                 |                 | 44180<br>71900 | 29.71          | 50.83<br>61.53 | 1.36         | 79.3  | 950.10 | 50.50           | 0              | 93.30<br>86.03 | 6.70           | 0.00         |       |                 |                 | 12000          | 41.53          | 37.81          | 1.17         |
|       |                                         |                 | 23300          | 52.55                   | 46.38          | 1.07         |       | <b>5</b> 07 00  |                 | 72600          | 14.06          | 61.88          | 1.66         |       |        |                 | 4600           | 71.08          | 26.12          | 0.78         |       |                 |                 | 20600          | 23.84          | 48.10          | 1.50         |
|       |                                         |                 | 26400<br>30400 | 48.52<br>43.76          | 50.35<br>54.95 | 1.13         | 71.5  | 596.80          | 404.70          | 0<br>3800      | 94.19<br>84.65 | 5.59<br>11.04  | 0.22         |       |        |                 | 6480<br>8560   | 62.28<br>54.76 | 32.57<br>38.75 | 0.90<br>0.99 |       |                 |                 | 23000<br>25700 | 20.42<br>17.17 | 50.02<br>52.01 | 1.67         |
|       |                                         |                 | 34100          | 39.81                   | 58.78          | 1.41         |       |                 |                 | 7930           | 75.72<br>67 44 | 16.40<br>21.29 | 0.45         |       |        |                 | 9630           | 51.18          | 41.63          | 1.09         |       |                 |                 | 26800          | 15.94          | 52.61          | 1.64         |
|       |                                         |                 | 55350          | 23.15                   | 75.15          | 1.70         |       |                 |                 | 14850          | 62.48          | 24.22          | 0.75         |       |        |                 | 13950          | 39.10          | 51.53          | 1.36         |       |                 |                 | 31200          | 12.03          | 55.00          | 1.68         |
|       |                                         |                 | 79100<br>79720 | 12.66<br>12.52          | 85.34<br>85.51 | 2.00         |       |                 |                 | 28700          | 42.92          | 35.75          | 1.08         |       |        |                 | 15570          | 35.28<br>32.07 | 54.87<br>57.47 | 1.43         |       |                 |                 | 33000<br>34200 | 10.70<br>9.95  | 55.74<br>55.83 | 1.70         |
| 71.5  | 0.00                                    | 50.10           | 0              | 94.52<br>85.95          | 5.33           | 0.15         |       |                 |                 | 33900<br>52170 | 37.19<br>22.74 | 39.10<br>47.77 | 1.14         |       |        |                 | 19200<br>21010 | 28.17<br>25.36 | 60.92<br>63.06 | 1.62         | 88.7  | 0.00            | 0.00            | 0              | 94.16<br>77.18 | 5.67           | 0.17         |
|       |                                         |                 | 6680           | 79.53                   | 18.65          | 0.47         | 71.5  | 0.00            | 702.70          | 0              | 96.96<br>94 22 | 2.96           | 0.08         |       |        |                 | 22960          | 22.30          | 65.81          | 1.75         |       |                 |                 | 2190           | 65.22          | 33.90          | 0.88         |
|       |                                         |                 | 9880<br>13810  | 73.58<br>66.51          | 24.32<br>30.53 | 0.61         |       |                 |                 | 4640           | 85.40          | 10.11          | 0.30         |       |        |                 | 27700          | 16.63          | 70.29          | 1.85         |       |                 |                 | 4290           | 45.89          | 43.67          | 1.13         |
|       |                                         |                 | 17100<br>20780 | 61.36<br>55.93          | 35.38<br>40.32 | 0.86<br>0.99 | -     |                 |                 | 8400<br>11800  | 77.03          | 15.20<br>19.40 | 0.44         |       |        |                 | 29060<br>31000 | 15.25<br>13.58 | 71.40<br>72.77 | 1.98<br>1.93 |       |                 |                 | 5190<br>8090   | 39.48<br>24.36 | 58.99<br>73.66 | 1.53         |
|       |                                         |                 | 24620<br>28380 | 50.80<br>46.62          | 45.06<br>49 52 | 1.09         |       |                 |                 | 15370<br>23600 | 63.89<br>50.91 | 23.39<br>31.20 | 0.64         | 79.0  | 0.00   | 99.70           | 0<br>2000      | 93.75<br>83.28 | 6.09           | 0.15         |       |                 |                 | 9090<br>10190  | 20.56          | 77.37<br>80.70 | 2.07         |
|       |                                         |                 | 31980          | 42.29                   | 52.71          | 1.29         |       |                 |                 | 26800          | 46.63          | 33.79          | 0.97         |       |        |                 | 5500           | 67.11          | 29.19          | 0.73         |       |                 |                 | 11190          | 14.51          | 83.29          | 2.21         |
|       |                                         |                 | 51790          | 35.72<br>25.83          | 58.70<br>67.89 | 1.44         |       |                 |                 | 34100          | 38.19          | 38.88          | 1.14         |       |        |                 | 10100          | 51.00          | 40.26          | 1.13         |       |                 |                 | 12090          | 12.48          | 85.25<br>86.95 | 2.27         |
|       |                                         |                 | 60180<br>71380 | 20.97<br>15.84          | 72.32<br>77.06 | 1.77<br>1.87 | 1     |                 |                 | 37100<br>44740 | 35.29<br>28.73 | 40.80<br>44.84 | 1.15         |       |        |                 | 11500<br>13900 | 47.02<br>40.78 | 47.27<br>52.86 | 1.22         | 88.7  | 3.79            | 6.14            | 13990<br>0     | 9.10<br>94.09  | 88.54<br>5.77  | 2.35<br>0.15 |
| 71 5  | 950.0                                   | 50.6            | 81320          | 12.43                   | 80.38          | 1.96         | 71.5  | 301.70          | 700.20          | 55950<br>0     | 21.24<br>90.36 | 49.36<br>9.37  | 1.42         |       |        |                 | 17800          | 32.10          | 59.87<br>65.55 | 1.55         |       |                 |                 | 1000           | 79.79<br>60.98 | 19.82          | 0.53         |
| 11.5  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 50.0            | 1010           | 95.18                   | 4.79           | 0.00         |       |                 |                 | 3580           | 81.77          | 14.15          | 0.47         |       |        |                 | 23400          | 23.08          | 68.29          | 1.76         |       |                 |                 | 3600           | 51.66          | 47.29          | 1.23         |
|       |                                         |                 | 2560<br>5040   | 91.36<br>85.54          | 12.27          | 0.00         |       |                 |                 | 10580          | 67.34          | 22.18          | 0.68         |       |        |                 | 29500<br>32200 | 13.79          | 74.36<br>76.75 | 1.90         |       |                 |                 | 4700<br>5600   | 43.23          | 55.89<br>61.47 | 1.49         |
|       |                                         |                 | 8430<br>12760  | 78.47<br>70.03          | 18.01<br>24.52 | 0.46         |       |                 |                 | 14580<br>17920 | 60.45<br>55.20 | 26.16<br>29.16 | 0.72         | 79.1  | 250.00 | 100.00          | 42700<br>0     | 7.39<br>93.53  | 82.31<br>6.31  | 2.13<br>0.16 | i     |                 |                 | 8100<br>9100   | 24.47<br>20.65 | 73.82<br>77.51 | 1.96         |
|       |                                         |                 | 16000          | 64.41                   | 29.02          | 0.72         |       |                 |                 | 20680          | 51.18          | 31.44          | 0.90         |       |        |                 | 2100           | 82.63          | 15.61          | 0.40         | I     |                 |                 | 10100          | 17.54          | 80.53          | 2.12         |
|       |                                         |                 | 22970          | 53.78                   | 37.38          | 0.95         |       |                 |                 | 29380          | 40.25          | 37.57          | 1.03         |       |        |                 | 7600           | 59.15          | 35.02          | 0.91         |       |                 |                 | 12300          | 12.19          | 85.02          | 2.20         |
|       |                                         |                 | 25870<br>30190 | 50.05<br>44.78          | 40.48<br>44.67 | 1.04         |       |                 |                 | 38280<br>47030 | 31.50<br>24.87 | 42.38<br>46.17 | 1.23         |       |        |                 | 9800<br>12100  | 51.64<br>44.86 | 40.98<br>46.44 | 1.14         |       |                 |                 | 13400<br>14300 | 10.10<br>8.63  | 87.82<br>89.15 | 2.36         |
|       |                                         |                 | 34290<br>40750 | 40.47                   | 48.25<br>53.24 | 1.19         | 71.5  | 0.00            | 1002.7          | 0<br>1000      | 96.96<br>94.48 | 2.87<br>4.33   | 0.16         |       |        |                 | 16400<br>18500 | 34.45<br>30.34 | 54.83<br>58.27 | 1.44         | 89.0  | 0.00            | 10.18           | 0              | 93.01<br>78.56 | 6.80<br>21.17  | 0.19         |
|       |                                         | 100.00          | 55660          | 23.38                   | 61.78          | 1.50         |       |                 |                 | 3200           | 88.74          | 7.43           | 0.21         |       |        |                 | 21900          | 24.75          | 62.30          | 1.68         |       |                 |                 | 2000           | 66.15          | 33.14          | 0.93         |
| /1.5  | 0.00                                    | 100.30          | 1170           | 97.24<br>94.84          | 5.24           | 0.08         |       |                 |                 | 10500          | 72.32          | 16.34          | 0.42         |       |        |                 | 24900<br>27000 | 18.21          | 68.73          | 1.84         |       |                 |                 | 4100           | 54.80<br>46.13 | 44.09<br>52.49 | 1.25         |
|       |                                         |                 | 4070<br>7270   | 87.43<br>80.81          | 11.00<br>17.00 | 0.28         |       |                 |                 | 14020<br>17300 | 65.66<br>59.85 | 20.05 23.16    | 0.61         |       |        |                 | 29100<br>31000 | 15.95<br>14.20 | 70.17<br>71.48 | 1.85         |       |                 |                 | 5100<br>6100   | 38.68<br>32.79 | 59.54<br>65.43 | 1.62         |
|       |                                         |                 | 10870<br>14290 | 73.51<br>67.37          | 23.08<br>28.35 | 0.58         |       |                 |                 | 20960<br>24760 | 54.10<br>48.70 | 26.35<br>29.33 | 0.81         | 79.1  | 500.00 | 100.10          | 0<br>2600      | 92.86<br>79.28 | 6.91<br>17.80  | 0.23         |       |                 |                 | 7100<br>8100   | 27.41          | 70.51          | 1.95         |
|       |                                         |                 | 18470          | 60.64                   | 34.30          | 0.91         |       |                 |                 | 28770          | 43.75          | 32.18          | 0.95         |       |        |                 | 5000           | 68.06          | 26.36          | 0.71         |       |                 |                 | 9100           | 19.58          | 78.44          | 2.17         |
|       |                                         |                 | 22210<br>25370 | 55.18<br>51.01          | 39.02<br>42.73 | 0.99         |       |                 |                 | 43300          | 29.36          | 40.07          | 1.02         |       |        |                 | 9600<br>12100  | 51.33<br>43.69 | 39.67<br>45.64 | 1.18         |       |                 |                 | 11100          | 16.32<br>13.99 | 81.20<br>84.61 | 2.22         |
|       |                                         |                 | 28970<br>32670 | 46.39<br>42.32          | 46.52<br>50.09 | 1.15         | 79.1  | 0.00            | 0.00            | 53300<br>0     | 22.10<br>98.49 | 43.88<br>1.51  | 0.00         |       |        |                 | 14400<br>18200 | 38.18<br>30.25 | 50.00<br>56.32 | 1.36<br>1.51 |       |                 |                 | 12100<br>13100 | 11.65<br>9.87  | 86.00<br>87.85 | 2.36         |
|       |                                         |                 | 43200<br>53320 | 32.54                   | 58.85<br>64.99 | 1.47         |       |                 |                 | 3000<br>6200   | 82.56<br>68.46 | 17.04<br>30.77 | 0.41         |       |        |                 | 21300          | 24.99<br>17.44 | 60.41<br>66.44 | 1.65         |       |                 |                 | 14100          | 8.27           | 89.12          | 2.47         |
|       |                                         |                 | 82340          | 12.25                   | 76.78          | 1.91         |       |                 |                 | 9000           | 58.10          | 40.91          | 0.99         |       |        |                 | 28100          | 16.29          | 67.18          | 1.81         | 89.0  | 990.40          | 10.00           | 0              | 86.43          | 13.19          | 0.38         |
| 71.8  | 0.00                                    | 104.50          | 83470<br>0     | 11.81<br>96.44          | 76.98<br>3.45  | 0.11         |       |                 |                 | 18500          | 33.44          | 49.06<br>64.97 | 1.60         | 79.1  | 750.50 | 100.00          | 30100<br>0     | 14.52<br>93.38 | 68.74<br>6.43  | 0.19         |       |                 |                 | 1000<br>2000   | 73.67<br>61.56 | 26.65<br>37.78 | 0.69         |
|       |                                         |                 | 1000<br>4700   | 93.21<br>84.73          | 5.68<br>13.13  | 0.13         |       |                 |                 | 21500<br>24100 | 28.08<br>24.09 | 70.16<br>74.10 | 1.76         |       |        |                 | 2200<br>4300   | 81.37<br>71.54 | 15.57<br>23.23 | 0.44         |       |                 |                 | 3000<br>4000   | 51.41<br>43.27 | 46.98<br>55.06 | 1.25         |
|       |                                         |                 | 8500           | 76.35                   | 20.13          | 0.50         |       |                 |                 | 27600<br>29100 | 19.72          | 78.39<br>79.99 | 1.89         |       |        |                 | 6200           | 63.61          | 29.38          | 0.80         |       |                 |                 | 5000           | 36.34          | 61.55          | 1.84         |
|       |                                         |                 | 15640          | 63.33                   | 31.56          | 0.78         | 70.0  | 0.00            | 8.61            | 30600          | 16.56          | 81.45          | 1.99         |       |        |                 | 12800          | 42.32          | 45.66          | 1.27         |       |                 |                 | 7000           | 25.51          | 71.60          | 2.02         |
|       |                                         |                 | 19700<br>23700 | 57.73<br>51.31          | 37.47<br>41.96 | 0.91         | 79.0  | 0.00            | 5.01            | 1700           | 82.31          | 17.11          | 0.20         |       |        |                 | 14500<br>19300 | 38.07<br>28.39 | 49.02<br>56.54 | 1.35         |       |                 |                 | 8000<br>9000   | 21.62<br>18.14 | 75.48<br>78.78 | 2.15         |
|       |                                         |                 | 27200<br>32020 | 46.72<br>41.12          | 45.82<br>50.81 | 1.13         |       |                 |                 | 4800<br>10100  | 68.66<br>50.78 | 30.41<br>48.19 | 0.73         |       |        |                 | 22100<br>24300 | 23.87<br>20.84 | 60.03<br>62.36 | 1.63<br>1.67 |       |                 |                 | 10000          | 15.24<br>12.72 | 81.46<br>83.77 | 2.28         |
|       |                                         |                 | 35500          | 37.49                   | 53.88<br>61.98 | 1.35         |       |                 |                 | 11400<br>12600 | 46.85<br>43.83 | 51.76<br>54.83 | 1.29         | 70 A  | 800 30 | 101 80          | 27500          | 17.09          | 65.25          | 1.76         |       |                 |                 | 12000          | 10.85          | 86.00          | 2.27         |
|       |                                         |                 | 51800          | 24.30                   | 65.35          | 1.61         |       |                 |                 | 13700          | 40.98          | 57.49          | 1.43         | 19.0  | 099.00 | 101.00          | 1500           | 84.78          | 13.11          | 0.38         |       |                 |                 | 14000          | 7.48           | 88.54          | 2.30         |
|       |                                         |                 | 56000<br>84370 | 21.76<br>10.42          | 67.35<br>77.26 | 1.65         |       |                 |                 | 16300          | 35.19          | 63.01          | 1.53         |       |        |                 | 2800<br>5700   | 78.33<br>65.35 | 18.13<br>27.81 | 0.45         | 89.0  | 0.00            | 30.00           | 0<br>1000      | 89.76<br>73.90 | 9.96<br>23.17  | 0.28         |
| 71.5  | 897.90                                  | 103.60          | 85400<br>0     | 10.12<br>89.10          | 77.57<br>10.65 | 1.90<br>0.25 |       |                 |                 | 21900<br>23100 | 25.49<br>23.82 | 72.65<br>74.44 | 1.78<br>1.82 |       |        |                 | 9900<br>11400  | 50.39<br>45.86 | 39.06<br>42.47 | 1.05<br>1.19 |       |                 |                 | 2000<br>3000   | 61.24<br>51.97 | 34.27<br>43.76 | 0.98<br>1.26 |
|       |                                         |                 | 3350           | 81.26                   | 16.00          | 0.40         |       |                 |                 | 24200<br>25300 | 22.45<br>20.89 | 75.90<br>76.94 | 1.89         |       |        |                 | 13500          | 40.20          | 46.71          | 1.25         |       |                 |                 | 4000           | 43.72          | 51.55          | 1.21         |
|       |                                         |                 | 11270          | 65.81                   | 26.90          | 0.73         |       |                 |                 | 29800          | 16.13          | 81.72          | 2.01         |       |        |                 | 18100          | 30.42          | 54.44          | 1.43         |       |                 |                 | 6000           | 30.52          | 63.32          | 1.74         |
|       |                                         |                 | 14850<br>21870 | 60.12<br>49. <b>9</b> 4 | 31.15          | 0.84         |       |                 |                 | 32300          | 13.93          | 83.82          | 2.02         |       |        |                 | 22000          | 27.55          | 59.28          | 1.56         |       |                 |                 | 8100           | 25.47          | 68.77<br>72.17 | 1.96         |
|       |                                         |                 | 25450<br>29550 | 45.43<br>40.79          | 41.58<br>44.90 | 1.02         | /9.0  | 0.00            | 10.59           | 0<br>1700      | 92.22<br>83.37 | 7.59<br>15.98  | 0.19<br>0.35 |       |        |                 | 29100<br>31300 | 15.41<br>13.46 | 65.58<br>67.24 | 1.79<br>1.82 |       |                 |                 | 9100<br>10100  | 18.12<br>15.15 | 75.94<br>78.36 | 2.17<br>2.20 |
|       |                                         |                 | 33350          | 37.01                   | 47.78          | 1.20         |       |                 |                 | 3000<br>4100   | 77.11<br>72.34 | 21.84<br>26.54 | 0.56         | 79 1  | 0      | 700.00          | 33000          | 12.13          | 67.95          | 1.92         |       |                 |                 | 11100          | 12.78          | 80.55          | 2.27         |
|       |                                         |                 | 41870          | 29.45                   | 53.12          | 1.42         |       |                 |                 | 5400           | 66.84          | 31.54          | 0.79         | 15.1  | Ũ      | 700.00          | 2700           | 77.06          | 17.00          | 0.52         |       |                 |                 | 13100          | 9.03           | 84.22          | 2.38         |
|       |                                         |                 | 51450<br>77760 | 22.92<br>11.53          | 57.84<br>66.09 | 1.49<br>1.66 |       |                 |                 | 10900          | 48.53          | 49.25          | 1.21         |       |        |                 | 5500<br>9200   | 64.51<br>50.80 | 25.17<br>33.87 | 0.69<br>1.01 | 89.0  | 969.50          | 30.20           | 14200<br>0     | 7.43<br>86.36  | 85.50<br>13.12 | 2.36<br>0.52 |
| 71.5  | 699.00                                  | 302.40          | 78910<br>0     | 11.17<br>94.47          | 66.43<br>5.35  | 1.77         |       |                 |                 | 12100<br>13800 | 45.13<br>40.91 | 52.29<br>56.43 | 1.29         |       |        |                 | 11900<br>14400 | 42.75<br>36.54 | 39.10<br>43.24 | 1.16<br>1.28 |       |                 |                 | 1000<br>2000   | 72.04<br>60.84 | 25.56<br>36.08 | 0.77         |
|       |                                         |                 | 2400           | 88.36                   | 9.00           | 0.19         |       |                 |                 | 15200<br>18100 | 37.62<br>31.71 | 59.47<br>65.18 | 1.48         |       |        |                 | 18640          | 27.94          | 48.88<br>52.08 | 1.48         |       |                 |                 | 3000           | 50.85<br>42 20 | 45.11          | 1.24         |
|       |                                         |                 | 9200           | 73.58                   | 18.19          | 0.49         |       |                 |                 | 19200          | 29.78          | 67.02          | 1.66         |       |        |                 | 25400          | 18.19          | 55.12          | 1.69         |       |                 |                 | 5000           | 35.64          | 58.32          | 1.60         |
|       |                                         |                 | 12900          | 60.54<br>60.45          | 22.45<br>26.25 | 0.67         |       |                 |                 | 26100          | 19.85          | 76.61          | 1.88         |       |        |                 | 28500          | 14.94          | 57.24          | 1.07         |       |                 |                 | 7000           | 29.95<br>24.87 | 63.49<br>67.69 | 1.76<br>1.90 |
|       |                                         |                 | 18420<br>20200 | 57.28<br>54.70          | 28.19<br>29.82 | 0.90         |       |                 |                 | 28500<br>30300 | 17.26<br>15.52 | 78.92<br>80.55 | 1.95<br>1.99 | 79.1  | 300.40 | 701.10          | 30000<br>0     | 13.58<br>92.61 | 58.14<br>7.16  | 1.70<br>0.23 |       |                 |                 | 8000<br>9000   | 21.06<br>17.63 | 71.45<br>74.47 | 1.99<br>2.12 |
|       |                                         |                 | 24600          | 48.50                   | 33.56          | 1.00         | 70.2  | 0.00            | 51.00           | 31700          | 14.26          | 81.84          | 2.00         | -     |        |                 | 2400<br>5400   | 79.13          | 15.12          | 0.43         |       |                 |                 | 10000          | 14.85          | 77.22          | 2.12         |
|       |                                         |                 | 34900          | 36.66                   | 40.85          | 1.08         | 19.3  | 0.00            | 51.00           | 1070           | 89.49<br>83.92 | 15.49          | 0.24         |       |        |                 | 8900           | 51.80          | 31.27          | 1.03         |       |                 |                 | 12000          | 10.48          | 81.02          | 2.16         |
|       |                                         |                 | 42170<br>52630 | 30.37<br>22.85          | 44.88<br>49.61 | 1.27<br>1.49 |       |                 |                 | 3150<br>5030   | 74.03<br>66.33 | 24.69<br>32.42 | 0.63<br>0.81 |       |        |                 | 14900          | 42.60<br>35.10 | 36.70<br>41.21 | 1.12         |       |                 |                 | 13000<br>14000 | 8.77<br>7.32   | 82.97<br>83.94 | 2.27<br>2.42 |
| 71.5  | 0.00                                    | 401.50          | 0<br>700       | 95.96<br>94.35          | 3.91<br>5.29   | 0.13<br>0.14 |       |                 |                 | 6470<br>8770   | 60.30<br>52.58 | 37.03<br>44.34 | 0.93         |       |        |                 | 18200<br>20900 | 28.37<br>23.53 | 45.14<br>48.11 | 1.35<br>1.48 |       |                 |                 |                |                |                |              |
|       |                                         |                 | 2720           | 89.24<br>82.00          | 8.84           | 0.28         |       |                 |                 | 10700          | 46.60          | 49.56          | 1.28         |       |        |                 | 22600          | 21.35          | 49.50          | 1.45         |       |                 |                 |                |                |                |              |
|       |                                         |                 | 6450           | 80.97                   | 14.76          | 0.42         |       |                 |                 | 14770          | 36.55          | 53.95<br>58.94 | 1.57         |       |        |                 | 27700          | 15.38          | 53.02          | 1.61         |       |                 |                 |                |                |                |              |
|       |                                         |                 | 13000          | 73.81<br>68.12          | 23.96          | 0.57         |       |                 |                 | 17220          | 31.40<br>27.79 | 63.45<br>66.90 | 1.61<br>1.74 |       |        |                 | 31100          | 13.46          | 54.09<br>54.78 | 1.61         |       |                 |                 |                |                |                |              |

Tab. 20 (Fortsetzung)

| Temp. | SF <sub>6</sub> | Sauer-<br>stoff | Zeit         | 7              | 15             | 5    | Temp. | SF6    | Sauer-<br>stoff | Zeit         | 7              | 15             | 5    |
|-------|-----------------|-----------------|--------------|----------------|----------------|------|-------|--------|-----------------|--------------|----------------|----------------|------|
| [C°]  | [mbar]          | [mbar]          | [s]          | [%]            | [%]            | [%]  | [C°]  | [mbar] | [mbar]          | [s]          | [%]            | [%]            | [%}  |
| 89.0  | 0.00            | 100.10          | 0            | 86.94          | 12.71          | 0.35 | 98.6  | 900.90 | 100.40          | 0            | 61.40          | 37.40          | 1.20 |
|       |                 |                 | 1010         | 71.50          | 25.37          | 0.68 |       |        |                 | 660          | 44.69          | 51.23          | 1.65 |
|       |                 |                 | 4100         | 58.30<br>42.02 | 37.79<br>52.62 | 1.50 |       |        |                 | 1320         | 32.30<br>23.55 | 61.31<br>68.76 | 2.01 |
|       |                 |                 | 5400         | 33.47          | 60.29          | 1.73 |       |        |                 | 2640         | 16.99          | 73.93          | 2.33 |
|       |                 |                 | 7900         | 21.23          | 70.46          | 2.06 |       |        |                 | 3320         | 12.06          | 77.72          | 2.44 |
|       |                 |                 | 9900         | 15.14          | 76.56          | 2.26 |       |        |                 | 4730         | 6.19           | 82.86          | 2.55 |
|       |                 |                 | 10900        | 12.59          | 78.37          | 2.27 |       |        |                 | 5400         | 4.52           | 84.14          | 2.70 |
|       |                 |                 | 11900        | 10.51          | 80.15          | 2.28 | 98.6  | 0.00   | 400.10          | 6090         | 3.22           | 85.43          | 2.67 |
|       |                 |                 | 14000        | 7.30           | 83.40          | 2.40 | 70.0  | 0.00   | 100.10          | 650          | 48.48          | 47.18          | 1.61 |
| 89.0  | 900.50          | 100.00          | 0            | 87.96          | 11.69          | 0.35 |       |        |                 | 1300         | 35.10          | 57.04          | 1.97 |
|       |                 |                 | 2060         | 74.12<br>60.89 | 33.54          | 1.05 |       |        |                 | 2600         | 25.40          | 69.69          | 2.14 |
|       |                 |                 | 3000         | 50.75          | 40.86          | 1.32 |       |        |                 | 3250         | 13.31          | 73.25          | 2.48 |
|       |                 |                 | 4000<br>5000 | 42.27          | 47.54<br>53.22 | 1.50 |       |        |                 | 3930         | 9.59<br>7.03   | 76.36          | 2.50 |
|       |                 |                 | 6000         | 29.51          | 57.76          | 1.75 |       |        |                 | 5250         | 5.02           | 79.64          | 2.74 |
|       |                 |                 | 7000         | 24.86          | 61.80          | 1.80 | 00 C  | c02.00 | 400.00          | 6080         | 3.49           | 81.06          | 2.77 |
|       |                 |                 | 9000         | 17.15          | 67.68          | 1.97 | 98.0  | 002.20 | 400.20          | 670          | 50.11          | 42.65          | 1.43 |
|       |                 |                 | 10100        | 14.04          | 70.11          | 2.05 |       |        |                 | 1350         | 36.04          | 52.82          | 1.89 |
|       |                 |                 | 11100        | 11.97          | 72.11          | 2.12 |       |        |                 | 2020         | 25.54          | 59.92<br>65.47 | 2.06 |
|       |                 |                 | 12900        | 8.51           | 74.49          | 2.18 |       |        |                 | 3430         | 12.66          | 69.15          | 2.42 |
| 90 N  | 0.00            | 600.00          | 14000        | 6.97           | 75.68          | 2.20 |       |        |                 | 4130         | 8.89           | 71.72          | 2.49 |
| 09.0  | 0.00            | 099.90          | 1000         | 70.79          | 24.42          | 0.46 |       |        |                 | 5820         | 3.83           | 74.79          | 2.55 |
|       |                 |                 | 2000         | 58.97          | 32.71          | 1.09 |       |        |                 | 6474         | 2.76           | 75.71          | 2.51 |
|       |                 |                 | 3200         | 47.26          | 40.64          | 1.42 | 98.6  | 0.00   | 700.10          | 0            | 60.27<br>43.00 | 38.40          | 1.33 |
|       |                 |                 | 5400         | 30.89          | 51.40          | 1.64 |       |        |                 | 1330         | 30.56          | 58.89          | 2.08 |
|       |                 |                 | 8100         | 18.71          | 59.57          | 1.93 |       |        |                 | 2000         | 21.89          | 64.99          | 2.36 |
|       |                 |                 | 10400        | 14.94          | 64.08          | 2.02 |       |        |                 | 3400         | 10.80          | 72.43          | 2.65 |
|       |                 |                 | 11500        | 10.14          | 66.28          | 2.14 |       |        |                 | 4060         | 7.79           | 74.64          | 2.60 |
|       |                 |                 | 12600        | 8.12           | 67.00<br>67.74 | 2.20 |       |        |                 | 4720<br>5440 | 5.70           | 76.11          | 2.75 |
| 89.0  | 0.00            | 1000.2          | 0            | 83.63          | 15.75          | 0.62 |       |        |                 | 6100         | 2.98           | 77.94          | 2.70 |
|       |                 | 0               | 1000         | 60.15          | 24.80          | 0.04 | 98.6  | 0.00   | 700.00          | 0            | 61.78          | 36.82          | 1.41 |
|       |                 |                 | 2000         | 56.76          | 24.89          | 1.10 |       |        |                 | 1000         | 47.73          | 40.70          | 1.70 |
|       |                 |                 | 3000         | 47.35          | 38.18          | 1.45 |       |        |                 | 1500         | 28.68          | 59.61          | 2.09 |
|       |                 |                 | 4000<br>5000 | 38.46          | 42.98<br>47 28 | 1.52 |       |        |                 | 2000         | 22.74          | 65.30<br>67.38 | 2.51 |
|       |                 |                 | 6000         | 26.42          | 50.60          | 1.82 |       |        |                 | 3000         | 13.60          | 70.30          | 2.61 |
|       |                 |                 | 8500         | 16.64          | 56.91          | 1.94 |       |        |                 | 3500         | 10.56          | 72.31          | 2.49 |
|       |                 |                 | 10400        | 13.47          | 58.50<br>60.23 | 2.08 |       |        |                 | 4000<br>4480 | 8.14<br>6.48   | 75.11          | 2.59 |
|       |                 |                 | 11400        | 9.57           | 61.01          | 2.10 |       |        |                 | 4980         | 5.02           | 76.00          | 2.69 |
|       |                 |                 | 12400        | 7.84           | 61.99          | 2.06 |       | 200.00 | 701 70          | 5460         | 4.02           | 76.73          | 2.68 |
|       |                 |                 | 14400        | 5.49           | 63.71          | 2.15 | 90.0  | 299.90 | 701.50          | 670          | 49.17          | 42.88          | 1.49 |
| 98.6  | 4.00            | 0.00            | 0            | 59.82          | 39.04          | 1.14 |       |        |                 | 2000         | 27.50          | 58.14          | 1.88 |
|       |                 |                 | 1500         | 29.64          | 68.35          | 2.01 |       |        |                 | 3360         | 17.52          | 65.48          | 2.40 |
|       |                 |                 | 2170         | 21.80          | 76.02          | 2.19 |       |        |                 | 4080         | 8.73           | 69.24          | 2.51 |
|       |                 |                 | 2840         | 15.93          | 81.75          | 2.31 |       |        |                 | 4780         | 6.03           | 70.74          | 2.61 |
|       |                 |                 | 4200         | 8.48           | 88.94          | 2.58 |       |        |                 | 6190         | 3.04           | 72.91          | 2.65 |
|       |                 |                 | 4900         | 6.16           | 91.17          | 2.66 | 98.6  | 0.00   | 1000.5          | 0            | 60.13          | 38.48          | 1.39 |
| 98.5  | 0.00            | 50.70           | 0            | 81.94          | 17.53          | 0.52 |       |        |                 | 2030         | 29.42          | 62.75          | 2.24 |
|       |                 |                 | 720          | 58.36          | 39.36          | 1.20 |       |        |                 | 2800         | 14.17          | 67.11          | 2.44 |
|       |                 |                 | 2240         | 28.85          | 67.21          | 1.98 |       |        |                 | 3540<br>4190 | 9.51           | 69.73<br>71.60 | 2.51 |
|       |                 |                 | 2980         | 20.38          | 74.73          | 2.26 |       |        |                 | 5420         | 3.74           | 73.57          | 2.87 |
|       |                 |                 | 3710         | 14.49          | 79.73          | 2.42 | 98.6  | 0.00   | 1000.0          | 0            | 58.38          | 40.11          | 1.51 |
|       |                 |                 | 5190         | 7.30           | 86.74          | 2.61 |       |        |                 | 1050         | 33.88          | 55.53          | 2.36 |
|       |                 |                 | 5880         | 5.30           | 88.73          | 2.65 |       |        |                 | 1550         | 26.43          | 60.29          | 2.76 |
|       |                 |                 | 7290         | 2.78           | 90.99          | 2.70 |       |        |                 | 2050         | 20.39          | 64.12<br>66.98 | 2.31 |
|       |                 |                 | 8380         | 1.70           | 92.13          | 2.76 |       |        |                 | 3050         | 12.06          | 68.98          | 2.58 |
| 98.4  | 951.9           | 50.1            | 0<br>850     | 57.03          | 41.71          | 1.26 |       |        |                 | 3560         | 9.97           | 71.12          | 2.72 |
|       |                 |                 | 1610         | 26.49          | 68.62          | 1.96 |       |        |                 | 4550         | 5.72           | 73.14          | 2.75 |
|       |                 |                 | 2400         | 18.41          | 75.97          | 2.31 |       |        |                 | 5050         | 4.29           | 73.92          | 2.68 |
|       |                 |                 | 3860         | 9.16           | 80.56          | 2.59 |       |        |                 | 5550         | 3.50           | 74.63          | 2.70 |
|       |                 |                 | 4680         | 6.26           | 86.41          | 2.66 |       |        |                 |              |                |                |      |
|       |                 |                 | 5470         | 4.32           | 88.12          | 2.66 |       |        |                 |              |                |                |      |
|       |                 |                 | 6910         | 2.22           | 90.04          | 2.76 |       |        |                 |              |                |                |      |
| 00 5  | 0.00            | 100.00          | 7610         | 1.55           | 90.47          | 2.69 |       |        |                 |              |                |                |      |
| 98.6  | 0.00            | 100.00          | 650          | 79.10<br>57.24 | 20.27          | 1.26 | 1     |        |                 |              |                |                |      |
|       |                 |                 | 1300         | 41.44          | 52.99          | 1.71 |       |        |                 |              |                |                |      |
|       |                 |                 | 1960<br>3260 | 30.45          | 63.31<br>75.66 | 2.04 |       |        |                 |              |                |                |      |
|       |                 |                 | 3910         | 11.97          | 79.38          | 2.48 |       |        |                 |              |                |                |      |
|       |                 |                 | 4550         | 8.92           | 82.22          | 2.60 | 1     |        |                 |              |                |                |      |
|       |                 |                 | 5220         | 0.40           | 04.09          | 2.00 | 1     |        |                 |              |                |                |      |

0.5 Torr 700 mg (5.7 mmol) der Diazaverbindung **8** als klare, farblose Flüssigkeit. Auf eingesetztes Mesylat bezogen, entspricht das einer Ausb. von 32%. Nach GC-Analyse (Carbowax 20 M, 24-m-Glaskapillare, 100°C, Retentionszeit 6.9 min) beträgt die Reinheit der Substanz 99.6%. – IR (film):  $\tilde{v} = 3090 \text{ cm}^{-1}$ , 2990, 2980, 2970, 1660, 1520, 1430, 1040, 895. – <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 1.50$ (m, 4H), 1.8–2.5 (m, 2H), 4.8 (s, 1H), 5.05 (s, 1H), 5.3 (breites s, 1 H), 5.5 (breites s, 1 H).  $-^{13}$ C-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 20.7$ , 22.6, 29.3, 63.0, 70.7, 108.9, 140.2. - MS (70 eV), m/z (%): 94 (12) [M<sup>+</sup> - N<sub>2</sub>], 79 (100), 77 (48), 66 (14), 53 (39). - UV (Hexan):  $\lambda_{max} = 380$  nm ( $\varepsilon = 122$ ), 359 (67). - C<sub>7</sub>H<sub>10</sub>N<sub>2</sub> (122.2): ber. C 68.82, H 8.25, N 22.93; gef. C 69.08, H 8.23, N 22.84.

Tab. 21. Schwingungsfrequenzen  $[cm^{-1}]$  von  $2^{[23]}$ 

| 3223.34       | 3223.07 | 3194.67          | 3173.59 | 3082.58 | 3076.17 | 3066.83 | 3013.65 | 2994.65                 | <b>2989</b> .11 |
|---------------|---------|------------------|---------|---------|---------|---------|---------|-------------------------|-----------------|
| 1666.30       | 1558.00 | 1471.88          | 1446.61 | 1421.04 | 1412.56 | 1398.64 | 1389.25 | <b>137</b> 1. <b>72</b> | 1358.44         |
| 1341.19       | 1231.57 | 1 <b>2</b> 13.37 | 1179.49 | 1155.35 | 1134.65 | 1104.39 | 1079.90 | 1017.62                 | 998.96          |
| <b>981.37</b> | 974.94  | 921.39           | 892.21  | 800.79  | 701.52  | 594.55  | 544.64  | 510.21                  | 479.34          |
| 466.79        | 393.36  | 204.67           | 137.48  | 71.65   |         |         |         |                         |                 |

2-(Aminomethyl)-7,7-dimethoxybicyclo[2.2.1]heptan: 15.0 g (48 mmol) 1,2,3,4-Tetrachlor-5-cyan-7,7-dimethoxy-bicyclo[2.2.1]hept-2-en<sup>[41]</sup> werden mit 66.0 g (0.9 mol) tert-Butylalkohol in 250 ml wasserfreiem THF gelöst. Man versetzt unter Argon mit 9 g Lithium, läßt ca. 12 h unter Rückfluß sieden und gibt die Reaktionsmischung vorsichtig auf 500 g Eis, nachdem überschüssiges Lithium vorher entfernt wurde. Die organische Phase wird mit Wasser gewaschen, mit Natriumsulfat getrocknet, das Lösungsmittel i.Vak. entfernt und der Rückstand destilliert. Bei 54–56°C/0.02 Torr werden 5.7 g (30 mmol) des Aminoketals als farblose Flüssigkeit erhalten: Ausb. 64%. – IR (Film):  $\tilde{v} = 3600-3200$  cm<sup>-1</sup> (NH-Valenz), 2960, 2835, 2820, 1070. – <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 0.9-1.8$  (m, 7H), 1.25 (s, 2H), 1.8–2.0 (m, 2H), 2.4–2.6 (m, 2H), 3.05 (d, 6H). – MS (70 eV), m/z (%): 185 (4) [M<sup>+</sup>], 155 (100), 101 (41).

7,7-Dimethoxy-2-methylenbicyclo[2.2.1]heptan: Zu einer Lösung von 17.1 g (92 mmol) des obigen Aminoketals in 40 ml Methanol werden bei -10°C 14.4 g (102 mmol) Methyliodid getropft. Nach 15 min wird die gleiche Menge Methyliodid nachgesetzt und anschließend eine Lösung von 4 g Natriumhydroxid in 40 ml Methanol zugetropft, wobei die Temp. auf 0°C gehalten wird. Im Zwei-Stunden-Takt wird die Zugabe von Methyliodid-Natriumhydroxid dreimal wiederholt. Die Reaktionsmischung wird ca. 12 h gerührt und dann unter Rückfluß erhitzt, bis die Lösung gegen Lackmus neutral reagiert. Das Lösungsmittel wird dann i.Vak. entfernt, der Rückstand in möglichst wenig Wasser gelöst und die Lösung auf 50 ml 35proz. Natriumhydroxid-Lösung gegeben. Das quartäre Ammoniumiodid kristalliert in ca. 12 h aus und wird abfiltriert. Eine Lösung von 16 g (45 mmol) des Ammoniumsalzes in 100 ml Wasser wird mit einer frisch gefällten Silberoxid-Suspension, hergestellt aus 17 g (0.10 mol) Silbernitrat, versetzt. Es wird ca. 12 h gerührt, der Niederschlag abfiltriert und das Filtrat auf 5-10 ml bei 45-50°C/30 Torr eingeengt. In einen mit einem Septum versehenen Zweihalskolben, der über eine Kühlfalle (2-Propanol-/ Trockeneis) auf 35-45 Torr gehalten und durch ein Bad auf 140°C erhitzt wird, wird in Portionen von 0.5 ml mit einer Spitze das obige, das quartäre Ammoniumhydroxid enthaltende Filtrat gegeben. Anschließend wird die Kühlfalle mit Dichlormethan ausgeschüttelt, mit 1proz. HCl und dann mit NaHCO3-Lösung die organische Phase gewaschen, mit Natriumsulfat getrocknet und das Lösungsmittel i.Vak. entfernt. Destillation des Rückstands (30 Torr, 60-70°C) liefert 4.3 g (25.6 mmol) des Olefins als wasserklare Flüssigkeit. Ausb. 56%, bezogen auf eingesetztes Aminoketal. - IR (Film):  $\tilde{v} = 3080 \text{ cm}^{-1}$ , 2980, 2960, 2840, 1670, 1070. – <sup>1</sup>H NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 1.2 - 2.7$  (m, 8 H), 3.25 (d, 6 H), 4.65 (s, 1 H), 4.85 (s, 1 H). - MS (70 eV), m/z (%): 168 (32) [M<sup>+</sup>], 153 (4), 132 (11), 101 (64), 79 (100).

2-Methylenbicyclo[2.2.1]heptan-7-on (9): 500 mg (3 mmol) des Ketals werden in einer mit Argon entgasten Mischung aus 35 ml Eisessig und 17.5 ml Wasser 5 h auf 60-70°C erhitzt. Das Reaktionsgemisch wird auf 150 ml Eis/Wasser gegeben, mit 50 ml Dichlormethan versetzt und die organische Phase mit NaHCO3-Lösung neutralisiert, mit Magnesiumsulfat getrocknet und das Lösungsmittel i.Vak. entfernt. Der Rückstand wird durch Kurzwegdestillation (20 Torr,  $40-60^{\circ}$ C) gereinigt und gaschromatographisch (15% SE 30, 1.5 m, 150°C, Retentionszeit 1.8 min) von restlichem Edukt (25%) befreit. Ausb. 83 mg (0.7 mmol, 23%). - IR (Film):  $\tilde{v} = 3090 \text{ cm}^{-1}$ , 2980, 2890, 1785, 1665, 1120, 890.  $-1^{1}$ H-NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 1.5 - 2.9$  (m, 8 H), 4.8 (s, 1 H), 5.0 (s, 1 H).  $-{}^{13}$ C-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 23.7, 25.2, 35.6, 40.1, 48.9,$ 107.4, 144.8, 213.0. - MS (70 eV), m/z (%): 122 (18) [M<sup>+</sup>], 94 (33), 79 (100), 77 (38), 66 (24), 53 (43). – UV (Hexan):  $\lambda_{max}=297\,$  nm  $(\epsilon = 158)$ . - C<sub>8</sub>H<sub>10</sub>O (122.2) ber. C 78.65, H 8.25; gef. C 78.69, H 8.44.

8-Methylen-4-phenyl-4-azatricyclo[5.2.2.0<sup>2,6</sup>]octan-3,5-dion (19): Eine Lösung von 1.8 g N-Phenylmaleimid (10.5 mmol) in 12 ml Toluol wird mit 2.2 g (11.5 mmol) 5-(Mesyloxymethyl)-1,3-cyclohexadien versetzt und ca. 12 h gerührt. Der hellgelbe Niederschlag wird abfiltriert, mit Toluol und anschließend mit Pentan gewaschen, in 200 ml Dichlormethan gelöst und über 0.2 g Pd/C (10%) hydriert. Nach Abfiltrieren des Katalysators wird das Lösungsmittel i.Vak. entfernt und der Rückstand in 200 ml wasserfreiem THF gelöst. In dieser Lösung werden 60 g basisches Al<sub>2</sub>O<sub>3</sub> suspendiert, und es wird 5 d bei Raumtemp. gerührt. Nach Filtrieren und Entfernen des Lösungsmittels i.Vak. wird der Rückstand chromatographisch (Al<sub>2</sub>O<sub>3</sub> neutral, Ether) aufgearbeitet, wobei 19 in einer Ausb. von 1.30 g (42%) als gelbes Öl anfällt. – IR (Film):  $\tilde{v} = 3092$  cm<sup>-1</sup>, 2940, 2920, 1710, 1500, 1395, 1195. - <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 1.6 - 1.7$  (breites s, 4H), 2.5 (m, 3H), 2.9 (breites s, 1H), 3.1 (breites s, 2 H), 4.85 (s, 1 H), 5.05 (s, 1 H), 7.1 - 7.6 (m, 5 H). - MS (70 eV), m/z (%): 267 (100) [M<sup>+</sup>], 175 (96), 174 (44), 94 (12), 92 (63), 77 (27).

4-Allyl-1,2,3,6-tetrahydro-N-phenylphthalimid (18): Eine Lösung von 370 mg (2.14 mmol) N-Phenylmaleimid und 200 mg (2.14 mmol) 3-Methylen-1,5-hexadien (15) in 2 ml Benzol wird ca. 12 h gerührt. Nach Entfernen des Lösungsmittels i.Vak. wird der Rückstand chromatographisch aufgearbeitet: 7-µ-Polygosil-Säule, 25 cm, 15 ml min<sup>-1</sup>, 90% Hexan, 9% Essigester, 1% Ethanol, Retentionszeit 6 min. – IR (Film):  $\tilde{v} = 3095 \text{ cm}^{-1}$ , 2995, 2990, 2880, 1720, 1395, 1190, 995, 915, 780, 695. - <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 2.0 - 2.9$ (m, 6H), 3.1 - 3.4 (m, 2H), 4.9 - 5.2 (breites d, 2H), 5.5 - 6.0 (m, 2H).MS (70 eV), m/z (%): 267 (98) [M<sup>+</sup>], 174 (36), 173 (8), 120 (100), 119 (40), 105 (29), 94 (8), 91 (95), 79 (71), 77 (67).

5-Methylen-3-cyclohexen-1-ylhydroperoxid (26): Eine Lösung von 100 mg (0.82 mmol) 8 in 150 ml Trichlorfluormethan wird bei -60°C mit Sauerstoff gesättigt und unter Durchleiten von Sauerstoff bei dieser Temp. in einer Pyrex-Photolyseapparatur 1 h belichtet (HPK 125). Nach Entfernen des Lösungsmittels i.Vak. bei 30°C bleiben 50 mg eines gelben Öls zurück, das durch Dünnschicht-Chromatographie (Kieselgel, Ether) aufgearbeitet wird. Die Zone mit  $R_f = 0.7$  reagiert mit einem Eisenthiocyanat-Sprey<sup>[42]</sup> positiv und wird durch HPLC (Polygonil, 7  $\mu$ , 25 cm, 8 ml min<sup>-4</sup>) mit 90% Hexan, 9% tert-Butylmethylether, 1% Methanol gereinigt. Das Hauptprodukt 26 hat eine Retentionszeit von 12.0 min. - IR (Film):  $\tilde{v} = 3400 \text{ cm}^{-1}$ , 3090, 3040, 2905, 1645, 1430, 1360, 1030, 890, 760, 740. - <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 2.0 - 3.0$  (m, 4 H), 4.2 - 4.5 (m, 1 H), 4.8 - 5.0 (breites s, 2 H), 5.6 - 5.9 (m, 1 H), 6.1 - 6.3(td, 1 H), 7.7-8.0 (s, 1 H). - MS (70 eV), m/z (%): 126 (25) [M<sup>+</sup>], 108 (22), 93 (63), 79 (82), 77 (58), 53 (57), 41 (100).

3-Allyl-2,5-dihydrothiophen-1,1-dioxid (16): Eine Lösung von 200 µl 15 in 5 ml SO<sub>2</sub>-gesättigtem Benzol wird in einer Ampulle eingeschmolzen und 5 h bei 150°C erhitzt. Entfernen des Lösungsmittels i.Vak. und Kurzwegdestillation des Rückstands liefern 180 mg (70%) 16. – IR (Film):  $\tilde{v} = 3085 \text{ cm}^{-1}$ , 2990, 2940, 1640, 1420, 1310, 1240, 1130, 1000, 925, 780. - <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>):  $\delta = 2.9$  (d, 2 H), 3.7 (d, 4 H), 5.0 - 5.2 (m, 2 H), 5.5 - 5.9 (m, 2 H). -MS (70 eV), m/z (%): 94 (18) [M<sup>+</sup>], 79 (100), 53 (26).

2-Methylen-7-thiabicyclo[2.2.1]heptan-7,7-dioxid (17): Eine Lösung aus 200 µl 5 in 7 ml SO2-gesättigtem Benzol wird mit weiteren 15 ml Sauerstoff-freiem Benzol in einer Ampulle eingeschmolzen und 5 h bei 155°C erhitzt. Nach Enfernen des Lösungsmittels und Kurzwegdestillation (100°C, 0.01 Torr) erhält man 160 mg eines gelben Öls, das durch präparative HPLC (Polygosil, 60 S, 28 cm, n-Hexan, 0.5% Ethanol) in zwei Substanzen im Verhältnis 1:1 aufgetrennt wird. Die Substanz mit der Retentionszeit von 12 min ist in allen spektroskopischen Eigenschaften mit 16 identisch. Die zweite Verbindung, 17, hat eine Retentionszeit von 14 min und kristallisiert nach längerem Aufbewahren im Tiefkühlschrank. -IR (Film):  $\tilde{v} = 2970 \text{ cm}^{-1}$ , 2930, 1670, 1450, 1310, 1130.  $- {}^{1}\text{H-NMR}$ (80 MHz, CDCl<sub>3</sub>):  $\delta = 1.7 - 2.0$  (m, 2H), 2.2 - 2.6 (m, 3H), 2.8 - 3.2 (m, 3H), 3.5 (d, 11H), 5.0 (d, 1H), 5.2 (t, 1H). - MS (70 eV), m/z(%): 94 (27), 79 (100), 53 (14).

#### 5. ESR-Spektroskopie

Die ESR-Spektren wurden mit einem X-Band-Spektrometer Typ ER 420 der Fa. Brucker aufgenommen. Die Tieftemperatureinrichtung bestand aus einem "Closed-cycle"-Helium-Kryostaten CSW 202 mit Temperatursteuergerät Typ APD-F der Fa. Air Products. Das über ein Hochvakuumsystem auf einen gekühlten Saphirstab aufgedampfte Gemisch aus Argon und Keton 9 (molares Verhältnis ca. 40000:1) wurde mit einer UV-Lampe (1000 W HG/Xe Hochdrucklampe Typ 977B-1, Fa. Hanovia) unter Zwischenschaltung eines Monochromators der Fa. Bausch & Lomb bei 330 nm bestrahlt. Die Spektren wurden mit einer Mikrowellenleistung von 20 dB, einer Modulationsamplitude von 1.0 mT, einer Zeitkonstante von 0.2 s und einer Verstärkung von  $1 \cdot 10^4 - 1 \cdot 10^5$  registriert.

- Herrn Professor Dr. Wolfgang Gerok in Dankbarkeit gewidmet. [1] III. Mitteilung: W. R. Roth, R. Langer, T. Ebbrecht, A. Beitat,
- H.-W. Lennartz, Chem. Ber. 1991, 124, 2751.
- W. R. Roth, B. Scholz, Chem. Ber. 1982, 115, 1197.
- <sup>[3]</sup> H. M. Frey, R. G. Hopkins, L. Skattebøl, J. Chem. Soc. B 1971, 539
- <sup>[4]</sup> H. M. Frey, D. H. Lister, J. Chem. Soc. A 1967, 26.
- <sup>15]</sup> K. Loosen, Dissertation, Universität Bochum, 1979.
- <sup>[6]</sup> B. M. Trost, T. R. Verkova, J. M. Fortunak, Tetrahedron Lett. 1979, 2301.
- <sup>[7]</sup> D. A. Lightner, D. E. Jackman, J. Am. Chem. Soc. 1974, 96, 1968; D. A. Lightner, D. E. Jackman, C. D. Christiansen, Tetrahedron Lett. 1978, 4467.
- <sup>[8]</sup> Wir danken D. Boxberg für die Durchführung dieser Messun-
- <sup>[9]</sup> W. R. Roth, H.-W. Lennartz, Chem. Ber. 1980, 113, 1806.
- <sup>[10]</sup> J. B. Pedley, R. D. Naylor, S. P. Kirby, *Thermochemical Data* of Organic Compounds, Chapman and Hill, London, **1986**.
- <sup>[11]</sup> W. v. E. Doering, J. C. Gilbert, Tetrahedron, Suppl. 1966, 7, 397. <sup>[12]</sup> W. Grimme, L. Schumachers, W. R. Roth, R. Breuckmann, Chem. Ber. 1981, 114, 3197.

- <sup>(13)</sup> W. R. Roth, R. Offerhaus, Publikation in Vorbereitung. <sup>(14)</sup> S. N. Demming, S. L. Morgan, *Anal. Chem.* **1973**, *45*, 278 A. <sup>(15)</sup> Berechnet nach:  $Z_{LJ} = N_A \sigma_{AM}^{-} (8RT/\pi \mu_{AM})^{1/2} \Omega_{AM}^{-2/4}$  in mit  $\sigma(O_2) = 3.6 \text{ Å}^{(36)}$ ;  $\sigma(2) = 6.9 \text{ Å}$  (abgeschätzt aus Modellen). Für die Berechnung der Geschwindigkeit wurde die Stoßzahl noch mit 1/27 multipliziert, ein Faktor, der die Spinstatistik (1/9) so-wie die Beobachtung von Wirtz<sup>[43]</sup> berücksichtigt, daß in Lösung im Mittel nur jeder dritte "Singlet-Encounter-Complex" zum Produkt führt.

- <sup>[16]</sup> J. L. Charton, P. de Mayo, L. Skattebøl, Tetrahedron. Lett. 1965, 4679.
- <sup>[17]</sup> Berechnet mit  $k_{\text{Diff}} = 8RT/3 \cdot 10^3 \, \eta^{[18]}$ .
- <sup>[18]</sup> Landolt-Börnstein, Bd IV, S. 516.
- <sup>[19]</sup> W. R. Roth, O. Adamczak, R. Breuckmann, H.-W. Lennartz, R.
- Bosse, *Chem. Ber.* **1992**, *124*, 2499. <sup>[20]</sup> Methylencyclohexan:  $\Delta H_1^{0} = -8.19^{[19]} 46.1^{[21]} (46.1 13.5^{[22]}) = 70.5 \text{ kcal mol}^{-1}$ .
- <sup>[21]</sup> D. Gutman, Acc. Chem. Res. 1990, 23, 375.
- <sup>[22]</sup> W. v. E. Doering, W. R. Roth, F. Bauer, M. Boenke, R. Breuckmann, J. Ruhkamp, O. Wortmann, Chem. Ber. 1991, 124, 1461.
- [23] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
- <sup>[24]</sup> G. S. Hammond, J. Am. Chem. Soc. 1955, 77, 334.
- <sup>[25]</sup> W. v. E. Doering, W. R. Roth, R. Breuckmann, L. Figge, H.-W. Lennartz, W.-D. Fessner, H. Prinzbach, *Chem. Ber.* **1988**, *121*, 1.
- <sup>[26]</sup> W. v. E. Doering, V. G. Toscano, G. H. Beasley, *Tetrahedron* 1971, 27, 5299.
- <sup>[27]</sup> W. R. Roth, H.-W. Lennartz, W. v. E. Doering, L. Birladeanu, C. A. Guyton, T. Kitagawa, J. Am. Chem. Soc. 1990, 112, 1722. [28] A. Limberg, Diplomarbeit, Univ. Bochum, 1991.
- <sup>[29]</sup> W. R. Roth, B. Hilterhaus, D. Boxberg, D. Wollweber, A. Bohnen, Publikation in Vorbereitung.
- [30] W. R. Roth, J. Ruhkamp, H.-W. Lennartz, Chem. Ber. 1991, 124, 2047.

- <sup>[31]</sup> "1,5-Divinyl-1,5-hexadien" sowie "1,5-Diphenyl-1,5-hexadien" erwiesen sich gegenüber Sauerstoff bis zu Drucken von 1000 mbar und Temperaturen bis zu 120°C als inert.
- <sup>[32]</sup> W. R. Roth, H.-W. Lennartz, W. v. E. Doering, W. R. Dolbier, Jr., J. C. Schmidthauser, J. Am. Chem. Soc. 1988, 110, 1883.
- <sup>[33]</sup> P. J. Robinson, K. A. Holbrook, Unimolecular Reactions, Wiley-Interscience, London, 1972.
- <sup>[34]</sup> T. Beyer, D. F. S. Swinehart, Comm. Assoc. Comput. Mach. 1979, 16, 379. <sup>[35]</sup> G. Z. Whitten, B. S. Rabinovitch, J. Chem. Phys. 1963, 38, 2466.
- <sup>[36]</sup> J. Troe, J. Chem. Phys. 1977, 66, 4758.
- <sup>[37]</sup> J. Troe, W. Wieters, J. Chem. Phys. 1980, 71, 3931.
  <sup>[38]</sup> R. C. Reid, T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1966.
- <sup>[39]</sup> W. J. Baley, R. Barclay, jr., R. A. Baylouny, J. Org. Chem. 1962, 27, 1851; B. M. Trost, T. R. Verkova, J. M. Fortunak, Tetrahedron. Lett. 1979, 2301.
- <sup>[40]</sup> PTFE-Schrumpfschlauch-Technik: J. Gante, U. Kalthof, F.-G. Klärner, Th. Weber, Angew. Chem. 1990, 102, 1081; Angew. Chem. Int. Ed. Engl. 1990, 29, 1025.
- <sup>[41]</sup> E. T. McBee, W. R. Direby, J. E. Burck, J. Am. Chem. Soc. 1955, 77, 385.
- <sup>[42]</sup> R. A. Johnson, E. G. Nidy, J. Org. Chem. 1975, 40, 1680.
- <sup>[43]</sup> J. Wirtz, E. Asler, E. Gassmann, Helv. Chim. Acta 1985, 68, 777. [170/93]